20,333 research outputs found

    Higgs diphoton rate enhancement from supersymmetric physics beyond the MSSM

    Full text link
    We show that supersymmetric "new physics" beyond the MSSM can naturally accommodate a Higgs mass near 126 GeV and enhance the signal rate in the Higgs to diphoton channel, while the signal rates in all the other Higgs decay channels coincide with Standard Model expectations, except possibly the Higgs to Z-photon channel. The "new physics" that corrects the relevant Higgs couplings can be captured by two supersymmetric effective operators. We provide a simple example of an underlying model in which these operators are simultaneously generated. The scale of "new physics" that generates these operators can be around 5 TeV or larger, and outside the reach of the LHC.Comment: 24 pages, 4 figure

    Fast Single-Charge Sensing with an rf Quantum Point Contact

    Full text link
    We report high-bandwidth charge sensing measurements using a GaAs quantum point contact embedded in a radio frequency impedance matching circuit (rf-QPC). With the rf-QPC biased near pinch-off where it is most sensitive to charge, we demonstrate a conductance sensitivity of 5x10^(-6) e^(2)/h Hz^(-1/2) with a bandwidth of 8 MHz. Single-shot readout of a proximal few-electron double quantum dot is investigated in a mode where the rf-QPC back-action is rapidly switched.Comment: related papers available at http://marcuslab.harvard.ed

    Cotunneling Spectroscopy in Few-Electron Quantum Dots

    Full text link
    Few-electron quantum dots are investigated in the regime of strong tunneling to the leads. Inelastic cotunneling is used to measure the two-electron singlet-triplet splitting above and below a magnetic field driven singlet-triplet transition. Evidence for a non-equilibrium two-electron singlet-triplet Kondo effect is presented. Cotunneling allows orbital correlations and parameters characterizing entanglement of the two-electron singlet ground state to be extracted from dc transport.Comment: related papers available at http://marcuslab.harvard.ed

    Wide-angle perfect absorber/thermal emitter in the THz regime

    Full text link
    We show that a perfect absorber/thermal emitter exhibiting an absorption peak of 99.9% can be achieved in metallic nanostructures that can be easily fabricated. The very high absorption is maintained for large angles with a minimal shift in the center frequency and can be tuned throughout the visible and near-infrared regime by scaling the nanostructure dimensions. The stability of the spectral features at high temperatures is tested by simulations using a range of material parameters.Comment: Submitted to Phys. Rev. Let

    Toward quantum simulations of biological information flow

    Full text link
    Recent advances in the spectroscopy of biomolecules have highlighted the possibility of quantum coherence playing an active role in biological energy transport. The revelation that quantum coherence can survive in the hot and wet environment of biology has generated a lively debate across both the physics and biology communities. In particular, it remains unclear to what extent non-trivial quantum effects are utilised in biology and what advantage, if any, they afford. We propose an analogue quantum simulator, based on currently available techniques in ultra-cold atom physics, to study a model of energy and electron transport based on the Holstein Hamiltonian By simulating the salient aspects of a biological system in a tunable laboratory setup, we hope to gain insight into the validity of several theoretical models of biological quantum transport in a variety of relevant parameter regimes.Comment: 8 Pages, 2 Figures, Non-technical contributing article for the Interface Focus Theme Issue `Computability and the Turning centenary'. Interface Focus http://rsfs.royalsocietypublishing.org/content/early/2012/03/22/rsfs.2011.0109.shor

    Rapid Single-Shot Measurement of a Singlet-Triplet Qubit

    Get PDF
    We report repeated single-shot measurements of the two-electron spin state in a GaAs double quantum dot. The readout scheme allows measurement with fidelity above 90% with a 7 microsecond cycle time. Hyperfine-induced precession between singlet and triplet states of the two-electron system are directly observed, as nuclear Overhauser fields are quasi-static on the time scale of the measurement cycle. Repeated measurements on millisecond to second time scales reveal evolution of the nuclear environment.Comment: supplemental material at http://marcuslab.harvard.edu/papers/single_shot_sup.pd

    Solid-state circuit for spin entanglement generation and purification

    Full text link
    We show how realistic charge manipulation and measurement techniques, combined with the exchange interaction, allow for the robust generation and purification of four-particle spin entangled states in electrically controlled semiconductor quantum dots. The generated states are immunized to the dominant sources of noise via a dynamical decoherence-free subspace; all additional errors are corrected by a purification protocol. This approach may find application in quantum computation, communication, and metrology.Comment: 5 pages, 2 figures; corrected minor typo
    corecore