55 research outputs found

    The Digital Life of Walkable Streets

    Full text link
    Walkability has many health, environmental, and economic benefits. That is why web and mobile services have been offering ways of computing walkability scores of individual street segments. Those scores are generally computed from survey data and manual counting (of even trees). However, that is costly, owing to the high time, effort, and financial costs. To partly automate the computation of those scores, we explore the possibility of using the social media data of Flickr and Foursquare to automatically identify safe and walkable streets. We find that unsafe streets tend to be photographed during the day, while walkable streets are tagged with walkability-related keywords. These results open up practical opportunities (for, e.g., room booking services, urban route recommenders, and real-estate sites) and have theoretical implications for researchers who might resort to the use social media data to tackle previously unanswered questions in the area of walkability.Comment: 10 pages, 7 figures, Proceedings of International World Wide Web Conference (WWW 2015

    Multiparametric determination of genes and their point mutations for identification of beta-lactamases

    Get PDF

    The High-Acceptance Dielectron Spectrometer HADES

    Get PDF
    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 degree, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main features and the performance of the detector system

    Integrated Detection of Extended-Spectrum-Beta-Lactam Resistance by DNA Microarray-Based Genotyping of TEM, SHV, and CTX-M Genes▿ †

    Get PDF
    Extended-spectrum beta-lactamases (ESBL) of the TEM, SHV, or CTX-M type confer resistance to beta-lactam antibiotics in Gram-negative bacteria. The activity of these enzymes against beta-lactam antibiotics and their resistance against inhibitors can be influenced by genetic variation at the single-nucleotide level. Here, we describe the development and validation of an oligonucleotide microarray for the rapid identification of ESBLs in Gram-negative bacteria by simultaneously genotyping blaTEM, blaSHV, and blaCTX-M. The array consists of 618 probes that cover mutations responsible for 156 amino acid substitutions. As this comprises unprecedented genotyping coverage, the ESBL array has a high potential for epidemiological studies and infection control. With an assay time of 5 h, the ESBL microarray also could be an attractive option for the development of rapid antimicrobial resistance tests in the future. The validity of the DNA microarray was demonstrated with 60 blinded clinical isolates, which were collected during clinical routines. Fifty-eight of them were characterized phenotypically as ESBL producers. The chip was characterized with regard to its resolution, phenotype-genotype correlation, and ability to resolve mixed genotypes. ESBL phenotypes could be correctly ascribed to ESBL variants of blaCTX-M (76%), blaSHV (22%), or both (2%), whereas no ESBL variant of blaTEM was found. The most prevalent ESBLs identified were CTX-M-15 (57%) and SHV-12 (18%)
    corecore