62,325 research outputs found

    Meson decay in a corrected 30P3^P_0 model

    Full text link
    Extensively applied to both light and heavy meson decay and standing as one of the most successful strong decay models is the 30P3^P_0 model, in which qqˉq\bar{q} pair production is the dominant mechanism. The pair production can be obtained from the non-relativistic limit of a microscopic interaction Hamiltonian involving Dirac quark fields. The evaluation of the decay amplitude can be performed by a diagrammatic technique for drawing quark lines. In this paper we use an alternative approach which consists in a mapping technique, the Fock-Tani formalism, in order to obtain an effective Hamiltonian starting from same microscopic interaction. An additional effect is manifest in this formalism associated to the extended nature of mesons: bound-state corrections. A corrected 30P3^P_0 is obtained and applied, as an example, to b1ωπb_{1}\to\omega\pi and a1ρπa_{1}\to\rho\pi decays.Comment: 3 figures. To appear in Physical Review

    Glueball-glueball scattering in a constituent gluon model

    Get PDF
    In this work we use a mapping technique to derive in the context of a constituent gluon model an effective Hamiltonian that involves explicit gluon degrees of freedom. We study glueballs with two gluons using the Fock-Tani formalism. In the present work we consider two possibilities for 0++0^{++}: (i) as a pure ssˉs\bar{s} and calculate, in the context of a quark interchange picture, the cross-section; (ii) as a glueball where a new calculation for this cross-section is made, in the context of the constituent gluon model, with gluon interchange.Comment: Proceedings of the International Workshop IX Hadron Physics and VII Relativistic Aspects of Nuclear Physics (HADRON-RANP 2004

    One-magnon Raman scattering in La(2)CuO(4): the origin of the field-induced mode

    Full text link
    We investigate the one-magnon Raman scattering in the layered antiferromagnetic La(2)CuO(4) compound. We find that the Raman signal is composed by two one-magnon peaks: one in the B1g channel, corresponding to the Dzyaloshinskii-Moryia (DM) mode, and another in the B3g channel, corresponding to the XY mode. Furthermore, we show that a peak corresponding to the XY mode can be induced in the planar (RR) geometry when a magnetic field is applied along the easy axis for the sublattice magnetization. The appearance of such field-induced mode (FIM) signals the existence of a new magnetic state above the Neel temperature T_N, where the direction of the weak-ferromagnetic moment (WFM) lies within the CuO(2) planes.Comment: 4 pages, 3 figure
    corecore