7,649 research outputs found

    Reversable heat flow through the carbon nanotube junctions

    Full text link
    Microscopic mechanisms of externally controlled reversable heat flow through the carbon nanotube junctions (NJ) are studied theoretically. Our model suggests that the heat is transfered along the tube section T{\cal T} by electrons (ee) and holes (hh) moving ballistically in either in parallel or in opposite directions and accelerated by the bias source-drain voltage VSDV_{\rm SD} (Peltier effect). We compute the Seebeck coefficient α\alpha , electric σ\sigma and thermal κ\kappa conductivities and find that their magnitudes strongly depend on VSDV_{\rm SD} and VGV_{\rm G}. The sign reversal of α\alpha versus the sign of VGV_{\rm G} formerly observed experimentally is interpreted in this work in terms of so-called chiral tunneling phenomena (Klein paradox)

    Design of helicopter rotor blades for optimum dynamic characteristics

    Get PDF
    The mass and stiffness distributions for helicopter rotor blades are tailored in such a way to give a predetermined placement of blade natural frequencies. The optimal design is pursued with respect of minimum weight, sufficient inertia, and reasonable dynamic characteristics. Finite element techniques are used as a tool. Rotor types include hingeless, articulated, and teetering

    Hole spin dynamics and hole gg factor anisotropy in coupled quantum well systems

    Get PDF
    Due to its p-like character, the valence band in GaAs-based heterostructures offers rich and complex spin-dependent phenomena. One manifestation is the large anisotropy of Zeeman spin splitting. Using undoped, coupled quantum wells (QWs), we examine this anisotropy by comparing the hole spin dynamics for high- and low-symmetry crystallographic orientations of the QWs. We directly measure the hole gg factor via time-resolved Kerr rotation, and for the low-symmetry crystallographic orientations (110) and (113a), we observe a large in-plane anisotropy of the hole gg factor, in good agreement with our theoretical calculations. Using resonant spin amplification, we also observe an anisotropy of the hole spin dephasing in the (110)-grown structure, indicating that crystal symmetry may be used to control hole spin dynamics

    Design of helicopter rotor blades for optimum dynamic characteristics

    Get PDF
    The possibilities and limitations of tailoring blade mass and stiffness distributions to give an optimum blade design in terms of weight, inertia, and dynamic characteristics are discussed. The extent that changes in mass of stiffness distribution can be used to place rotor frequencies at desired locations is determined. Theoretical limits to the amount of frequency shift are established. Realistic constraints on blade properties based on weight, mass, moment of inertia, size, strength, and stability are formulated. The extent that the hub loads can be minimized by proper choice of E1 distribution, and the minimum hub loads which can be approximated by a design for a given set of natural frequencies are determined. Aerodynamic couplings that might affect the optimum blade design, and the relative effectiveness of mass and stiffness distribution on the optimization procedure are investigated

    Scanning Raman spectroscopy of graphene antidot lattices: Evidence for systematic p-type doping

    Get PDF
    We have investigated antidot lattices, which were prepared on exfoliated graphene single layers via electron-beam lithography and ion etching, by means of scanning Raman spectroscopy. The peak positions, peak widths and intensities of the characteristic phonon modes of the carbon lattice have been studied systematically in a series of samples. In the patterned samples, we found a systematic stiffening of the G band mode, accompanied by a line narrowing, while the 2D mode energies are found to be linearly correlated with the G mode energies. We interpret this as evidence for p-type doping of the nanostructured graphene

    Pristine CNO abundances from Magellanic Cloud B stars II. Fast rotators in the LMC cluster NGC 2004

    Full text link
    We present spectroscopic abundance analyses of three main-sequence B stars in the young Large Magellanic Cloud cluster NGC 2004. All three targets have projected rotational velocities around 130 km/s. Techniques are presented that allow the derivation of stellar parameters and chemical abundances in spite of these high v sin i values. Together with previous analyses of stars in this cluster, we find no evidence among the main-sequence stars for effects due to rotational mixing up to v sin i around 130 km/s. Unless the equatorial rotational velocities are significantly larger than the v sin i values, this finding is probably in line with theoretical expectations. NGC 2004/B30, a star of uncertain evolutionary status located in the Blue Hertzsprung Gap, clearly shows signs of mixing in its atmosphere. To verify the effects due to rotational mixing will therefore require homogeneous analysis of statistically significant samples of low-metallicity main-sequence B stars over a wide range of rotational velocities.Comment: 12 pages, 5 figures, 2 tables; accepted for publication in ApJ (vol. 633, p. 899

    Solvable Examples of Drift and Diffusion of Ions in Non-uniform Electric Fields

    Get PDF
    The drift and diffusion of a cloud of ions in a fluid are distorted by an inhomogeneous electric field. If the electric field carries the center of the distribution in a straight line and the field configuration is suitably symmetric, the distortion can be calculated analytically. We examine the specific examples of fields with cylindrical and spherical symmetry in detail assuming the ion distributions to be of a generally Gaussian form. The effects of differing diffusion coefficients in the transverse and longitudinal directions are included

    Engineering ultralong spin coherence in two-dimensional hole systems at low temperatures

    Full text link
    For the realisation of scalable solid-state quantum-bit systems, spins in semiconductor quantum dots are promising candidates. A key requirement for quantum logic operations is a sufficiently long coherence time of the spin system. Recently, hole spins in III-V-based quantum dots were discussed as alternatives to electron spins, since the hole spin, in contrast to the electron spin, is not affected by contact hyperfine interaction with the nuclear spins. Here, we report a breakthrough in the spin coherence times of hole ensembles, confined in so called natural quantum dots, in narrow GaAs/AlGaAs quantum wells at temperatures below 500 mK. Consistently, time-resolved Faraday rotation and resonant spin amplification techniques deliver hole-spin coherence times, which approach in the low magnetic field limit values above 70 ns. The optical initialisation of the hole spin polarisation, as well as the interconnected electron and hole spin dynamics in our samples are well reproduced using a rate equation model.Comment: 16 pages, 6 figure
    • …
    corecore