243 research outputs found

    Risk Assessment Plan for Petroleum Underground Storage Tanks in Kentucky, Part ll: Diesel, Heating Oil, Other Middle Distillates and Waste Oil

    Get PDF
    This report consists of an appendix :Risk Assessment Plan for Petroleum Underground Storage Tanks in Kentucky and a second appendix: Environmental Half-Life and Ecological Effects of PAH

    A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations

    Get PDF
    Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, ∆fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ mol–1, respectively. The ∆fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 ± 3.2, –446.6 ± 2.7, –702.1 ± 3.5, –487.8 ± 3.4 and –285.2 ± 3.2 kJ mol–1, respectively

    Kentucky UST Field Manual

    Get PDF
    This study was undertaken to address the removal and closure of defective petroleum underground storage tanks in Kentucky. Goals for the study included: To address standards for levels of contamination requiring corrective action consistent with accepted scientific and technical principles. To recommend a matrix or scoring system to be used for (a) ranking sites as to actual or potential harm to human health and the environment caused by release of petroleum from a petroleum storage tank, and (2) establishing standards and procedures for corrective action that shall adequately protect human health and the environment. To address all compounds individually and collectively known as petroleum. To produce a report that shall be scientifically defensible

    Genetic Covariance Structure of Reading, Intelligence and Memory in Children

    Get PDF
    This study investigates the genetic relationship among reading performance, IQ, verbal and visuospatial working memory (WM) and short-term memory (STM) in a sample of 112, 9-year-old twin pairs and their older siblings. The relationship between reading performance and the other traits was explained by a common genetic factor for reading performance, IQ, WM and STM and a genetic factor that only influenced reading performance and verbal memory. Genetic variation explained 83% of the variation in reading performance; most of this genetic variance was explained by variation in IQ and memory performance. We hypothesize, based on these results, that children with reading problems possibly can be divided into three groups: (1) children low in IQ and with reading problems; (2) children with average IQ but a STM deficit and with reading problems; (3) children with low IQ and STM deficits; this group may experience more reading problems than the other two

    Pathomics: Final Report

    Get PDF
    Pathomics is a research project to explore the feasibility for developing biosignatures for early infectious disease detection in humans, particularly those that represent a threat from bioterrorism. Our goal is to use a science-based approach to better understand the underlying molecular basis of disease and to find sensitive, robust, and specific combinations of biological molecules (biosignatures) in the host that will indicate the presence of developing infection prior to overt symptoms (pre-syndromic). The ultimate goal is develop a national surveillance system for monitoring for the release and managing the consequences of a biothreat agent or an emerging disease. Developing the science for a more comprehensive understanding of the molecular basis of infectious disease and the development of biosignature-based diagnostics could help detect both emerging and engineered treats to humans

    Status Report: Identification of Appropriate Standards for Corrective Action for a Release from Petroleum Underground Storage Tanks, Volume 1

    Get PDF
    This study was undertaken to address the removal and closure of defective petroleum underground storage tanks in Kentucky: To address standards for levels of contamination requiring corrective action consistent with accepted scientific and technical principles. To recommend a matrix or scoring system to be used for (a) ranking sites as to actual or potential harm to human health and the environment caused by a release of petroleum from a petroleum storage tank, and (b) establishing standards and procedures for corrective action that shall adequately protect human health and the environment. To address all compounds individually and collectively known as petroleum. To produce a report that shall be scientifically defensible

    Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah

    Get PDF
    The Uintah Basin in northeastern Utah, a region of intense oil and gas extraction, experienced ozone (O3) concentrations above levels harmful to human health for multiple days during the winters of 2009–2010 and 2010–2011. These wintertime O3 pollution episodes occur during cold, stable periods when the ground is snow-covered, and have been linked to emissions from the oil and gas extraction process. The Uintah Basin Winter Ozone Study (UBWOS) was a field intensive in early 2012, whose goal was to address current uncertainties in the chemical and physical processes that drive wintertime O3 production in regions of oil and gas development. Although elevated O3 concentrations were not observed during the winter of 2011–2012, the comprehensive set of observations tests our understanding of O3 photochemistry in this unusual emissions environment. A box model, constrained to the observations and using the nearexplicit Master Chemical Mechanism (MCM) v3.2 chemistry scheme, has been used to investigate the sensitivities of O3 production during UBWOS 2012. Simulations identify the O3 production photochemistry to be highly radical limited (with a radical production rate significantly smaller than the NOx emission rate). Production of OH from O3 photolysis (through reaction of O(1D) with water vapor) contributed only 170 pptv day−1, 8% of the total primary radical source on average (primary radicals being those produced from non-radical precursors). Other radical sources, including the photolysis of formaldehyde (HCHO, 52 %), nitrous acid (HONO, 26 %), and nitryl chloride (ClNO2, 13 %) were larger. O3 production was also found to be highly sensitive to aromatic volatile organic compound (VOC) concentrations, due to radical amplification reactions in the oxidation scheme of these species. Radical production was shown to be small in comparison to the emissions of nitrogen oxides (NOx), such that NOx acted as the primary radical sink. Consequently, the system was highly VOC sensitive, despite the much larger mixing ratio of total non-methane hydrocarbons (230 ppbv (2080 ppbC), 6 week average) relative to NOx (5.6 ppbv average). However, the importance of radical sources which are themselves derived from NOx emissions and chemistry, such as ClNO2 and HONO, make the response of the system to changes in NOx emissions uncertain. Model simulations attempting to reproduce conditions expected during snow-covered cold-pool conditions show a significant increase in O3 production, although calculated concentrations do not achieve the highest seen during the 2010–2011 O3 pollution events in the Uintah Basin. These box model simulations provide useful insight into the chemistry controlling winter O3 production in regions of oil and gas extraction

    Ozone Photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah

    Get PDF
    The Uintah Basin in northeastern Utah, a region of intense oil and gas extraction, experienced ozone (O3) concentrations above levels harmful to human health for multiple days during the winters of 2009–2010 and 2010–2011. These wintertime O3 pollution episodes occur during cold, stable periods when the ground is snow-covered, and have been linked to emissions from the oil and gas extraction process. The Uintah Basin Winter Ozone Study (UBWOS) was a field intensive in early 2012, whose goal was to address current uncertainties in the chemical and physical processes that drive wintertime O3 production in regions of oil and gas development. Although elevated O3 concentrations were not observed during the winter of 2011–2012, the comprehensive set of observations tests our understanding of O3 photochemistry in this unusual emissions environment. A box model, constrained to the observations and using the near-explicit Master Chemical Mechanism (MCM) v3.2 chemistry scheme, has been used to investigate the sensitivities of O3 production during UBWOS 2012. Simulations identify the O3 production photochemistry to be highly radical limited (with a radical production rate significantly smaller than the NOx emission rate). Production of OH from O3 photolysis (through reaction of O(1D) with water vapor) contributed only 170 pptv day−1, 8% of the total primary radical source on average (primary radicals being those produced from non-radical precursors). Other radical sources, including the photolysis of formaldehyde (HCHO, 52%), nitrous acid (HONO, 26%), and nitryl chloride (ClNO2, 13%) were larger. O3 production was also found to be highly sensitive to aromatic volatile organic compound (VOC) concentrations, due to radical amplification reactions in the oxidation scheme of these species. Radical production was shown to be small in comparison to the emissions of nitrogen oxides (NOx), such that NOx acted as the primary radical sink. Consequently, the system was highly VOC sensitive, despite the much larger mixing ratio of total non-methane hydrocarbons (230 ppbv (2080 ppbC), 6 week average) relative to NOx (5.6 ppbv average). However, the importance of radical sources which are themselves derived from NOx emissions and chemistry, such as ClNO2 and HONO, make the response of the system to changes in NOx emissions uncertain. Model simulations attempting to reproduce conditions expected during snow-covered cold-pool conditions show a significant increase in O3 production, although calculated concentrations do not achieve the highest seen during the 2010–2011 O3 pollution events in the Uintah Basin. These box model simulations provide useful insight into the chemistry controlling winter O3 production in regions of oil and gas extraction

    Assessment of Survivor Concerns (ASC): A newly proposed brief questionnaire

    Get PDF
    BACKGROUND: The purpose of this study was to design a brief questionnaire to measure fears about recurrence and health in cancer survivors. Research involving fear of recurrence has been increasing, indicating that it is an important concern among cancer survivors. METHODS: We developed and tested a six-item instrument, the Assessment of Survivor Concerns (ASC). Construct validity was examined in a multiple group confirmatory factor analysis (CFA) with 592 short-term and 161 long-term cancer survivors. Convergent and discriminant validity was examined through comparisons with the PANAS (Positive and Negative Affect Schedule) and the CES-D (Center for Epidemiologic Studies Depression) measures. RESULTS: CFA models for the ASC with short- and long-term survivors showed good fit, with equivalent structure across both groups of cancer survivors. Convergent and discriminant validity was also supported through analyses of the PANAS and CES-D. One item (children's health worry) did not perform as well as the others, so the models were re-run with the item excluded, and the overall fit was improved. CONCLUSION: The ASC showed excellent internal consistency and validity. We recommend the revised five-item instrument as an appropriate measure for assessment of cancer survivor worries
    • 

    corecore