48,564 research outputs found

    Charged lepton mixing and oscillations from neutrino mixing in the early Universe

    Full text link
    Charged lepton mixing as a consequence of neutrino mixing is studied for two generations e,μe,\mu in the temperature regime mμ≪T≪MWm_\mu \ll T \ll M_W in the early Universe. We state the general criteria for charged lepton mixing, critically reexamine aspects of neutrino equilibration and provide arguments to suggest that neutrinos may equilibrate as mass eigenstates in the temperature regime \emph{prior} to flavor equalization. We assume this to be the case, and that neutrino mass eigenstates are in equilibrium with different chemical potentials. Charged lepton self-energies are obtained to leading order in the electromagnetic and weak interactions. The upper bounds on the neutrino asymmetry parameters from CMB and BBN without oscillations, combined with the fit to the solar and KamLAND data for the neutrino mixing angle, suggest that for the two generation case there is resonant \emph{charged lepton} mixing in the temperature range T∼5GeVT \sim 5 \mathrm{GeV}. In this range the charged lepton oscillation frequency is of the same order as the electromagnetic damping rate.Comment: 17 pages, 2 figs, same results with more discussions on quantum Zeno effect. To appear in Astroparticle Physic

    Effect of epitaxial strain on ferroelectric polarization in multiferroic BiFeO3 films

    Full text link
    Multiferroic BiFeO3 epitaxial films with thickness ranging from 40 nm to 960 nm were grown by pulsed laser deposition on SrTiO3 (001) substrates with SrRuO3 bottom electrodes. X-ray characterization shows that the structure evolves from angularly-distorted tetragonal with c/a ~ 1.04 to more bulk-like distorted rhombohedral (c/a ~ 1.01) as the strain relaxes with increasing thickness. Despite this significant structural evolution, the ferroelectric polarization along the body diagonal of the distorted pseudo-cubic unit cells, as calculated from measurements along the normal direction, barely changes.Comment: Legend in Fig.3 corrected and et

    Supersymmetric reduced models with a symmetry based on Filippov algebra

    Full text link
    Generalizations of the reduced model of super Yang-Mills theory obtained by replacing the Lie algebra structure to Filippov nn-algebra structures are studied. Conditions for the reduced model actions to be supersymmetric are examined. These models are related with what we call \{cal N}_{min}=2 super pp-brane actions.Comment: v3: In the previous versions we overlooked that Eq.(3.9) holds more generally, and missed some supersymmetric actions. Those are now included and modifications including a slight change in the title were made accordingly. 1+18 page

    Spinor Bose Condensates in Optical Traps

    Full text link
    In an optical trap, the ground state of spin-1 Bosons such as 23^{23}Na, 39^{39}K, and 87^{87}Rb can be either a ferromagnetic or a "polar" state, depending on the scattering lengths in different angular momentum channel. The collective modes of these states have very different spin character and spatial distributions. While ordinary vortices are stable in the polar state, only those with unit circulation are stable in the ferromagnetic state. The ferromagnetic state also has coreless (or Skyrmion) vortices like those of superfluid 3^{3}He-A. Current estimates of scattering lengths suggest that the ground states of 23^{23}Na and 87^{87}Rb condensate are a polar state and a ferromagnetic state respectively.Comment: 11 pages, no figures. email : [email protected]

    Noncommutative D-Brane in Non-Constant NS-NS B Field Background

    Get PDF
    We show that when the field strength H of the NS-NS B field does not vanish, the coordinates X and momenta P of an open string endpoints satisfy a set of mixed commutation relations among themselves. Identifying X and P with the coordinates and derivatives of the D-brane world volume, we find a new type of noncommutative spaces which is very different from those associated with a constant B field background.Comment: 11 pages, Latex, minor modification

    Improved Spin Dynamics Simulations of Magnetic Excitations

    Full text link
    Using Suzuki-Trotter decompositions of exponential operators we describe new algorithms for the numerical integration of the equations of motion for classical spin systems. These techniques conserve spin length exactly and, in special cases, also conserve the energy and maintain time reversibility. We investigate integration schemes of up to eighth order and show that these new algorithms can be used with much larger time steps than a well established predictor-corrector method. These methods may lead to a substantial speedup of spin dynamics simulations, however, the choice of which order method to use is not always straightforward.Comment: J. Mod. Phys. C (in press

    Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation

    Get PDF
    We present evidence of optical Tamm states to surface plasmon polariton (SPP) coupling. We experimentally demonstrate that for a Bragg stack with a thin metal layer on the surface, hybrid Tamm-SPP modes may be excited when a grating on the air-metal interface is introduced. Out-coupling via the grating to free space propagation is shown to enhance the transmission as well as the directionality and polarization selection for the transmitted beam. We suggest that this system will be useful on those devices, where a metallic electrical contact as well as beaming and polarization control is needed
    • …
    corecore