6,978 research outputs found

    Consistency analysis of Kaluza-Klein geometric sigma models

    Get PDF
    Geometric sigma models are purely geometric theories of scalar fields coupled to gravity. Geometrically, these scalars represent the very coordinates of space-time, and, as such, can be gauged away. A particular theory is built over a given metric field configuration which becomes the vacuum of the theory. Kaluza-Klein theories of the kind have been shown to be free of the classical cosmological constant problem, and to give massless gauge fields after dimensional reduction. In this paper, the consistency of dimensional reduction, as well as the stability of the internal excitations, are analyzed. Choosing the internal space in the form of a group manifold, one meets no inconsistencies in the dimensional reduction procedure. As an example, the SO(n) groups are analyzed, with the result that the mass matrix of the internal excitations necessarily possesses negative modes. In the case of coset spaces, the consistency of dimensional reduction rules out all but the stable mode, although the full vacuum stability remains an open problem.Comment: 13 pages, RevTe

    Renormalization of hole-hole interaction at decreasing Drude conductivity

    Full text link
    The diffusion contribution of the hole-hole interaction to the conductivity is analyzed in gated GaAs/Inx_xGa1−x_{1-x}As/GaAs heterostructures. We show that the change of the interaction correction to the conductivity with the decreasing Drude conductivity results both from the compensation of the singlet and triplet channels and from the arising prefactor αi<1\alpha_i<1 in the conventional expression for the interaction correction.Comment: 6 pages, 5 figure

    New constraints on dust emission and UV attenuation of z=6.5-7.5 galaxies from millimeter observations

    Get PDF
    We have targeted two recently discovered Lyman break galaxies (LBGs) to search for dust continuum and [CII] 158 micron line emission. The strongly lensed z~6.8 LBG A1703-zD1 behind the galaxy cluster Abell 1703, and the spectroscopically confirmed z=7.508 LBG z8-GND-5296 in the GOODS-N field have been observed with the Plateau de Bure interferometer (PdBI) at 1.2mm. These observations have been combined with those of three z>6.5 Lya emitters (named HCM6A, Himiko, and IOK-1), for which deep measurements were recently obtained with the PdBI and ALMA. [CII] is undetected in both galaxies, providing a deep upper limit for Abell1703-zD1, comparable to recent ALMA non-detections. Dust continuum emission from Abell1703-zD1 and z8-GND-5296 is not detected with an rms of 0.12 and 0.16 mJy/beam. From these non-detections we derive upper limits on their IR luminosity and star formation rate, dust mass, and UV attenuation. Thanks to strong gravitational lensing the limit for Abell1703-zD1 is probing the sub-LIRG regime (LIR<8.1×1010L_{IR} <8.1 \times 10^{10} Lsun) and very low dust masses (Md<1.6×107M_d<1.6 \times 10^7 Msun). We find that all five galaxies are compatible with the Calzetti IRX-β\beta relation, their UV attenuation is compatible with several indirect estimates from other methods (the UV slope, extrapolation of the attenuation measured from the IR/UV ratio at lower redshift, and SED fits), and the dust-to-stellar mass ratio is not incompatible with that of galaxies from z=0 to 3. For their stellar mass the high-z galaxies studied here have an attenuation below the one expected from the mean relation of low redshift (z<1.5) galaxies. More and deeper (sub)-mm data are clearly needed to directly determine the UV attenuation and dust content of the dominant population of high-z star-forming galaxies and to establish more firmly their dependence on stellar mass, redshift, and other properties.Comment: 10 pages, 7 figures. Minor revisions. Accepted for publication in A&

    Towards characterizing the relationship between students' interest in and their beliefs about physics

    Get PDF
    We examine the relationships between students' self-reported interest and their responses to a physics beliefs survey. Results from the Colorado Learning Attitudes about Science Survey (CLASS v3), collected in a large calculusbased introductory mechanics course (N=391), were used to characterize students' beliefs about physics and learning physics at the beginning and end of the semester. Additionally students were asked at the end of the semester to rate their interest in physics, how it has changed, and why. We find a correlation between surveyed beliefs and self-rated interest (R=0.65). At the end of the term, students with more expert-like beliefs as measured by the 'Overall' CLASS score also rate themselves as more interested in physics. An analysis of students' reasons for why their interest changed showed that a sizable fraction of students cited reasons tied to beliefs about physics or learning physics as probed by the CLASS survey. The leading reason for increased interest was the connection between physics and the real world

    Derivation of the Quantum Probability Rule without the Frequency Operator

    Full text link
    We present an alternative frequencists' proof of the quantum probability rule which does not make use of the frequency operator, with expectation that this can circumvent the recent criticism against the previous proofs which use it. We also argue that avoiding the frequency operator is not only for technical merits for doing so but is closely related to what quantum mechanics is all about from the viewpoint of many-world interpretation.Comment: 12 page

    The Design and Validation of the Colorado Learning Attitudes about Science Survey

    Get PDF
    The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure various facets of student attitudes and beliefs about learning physics. This instrument extends previous work by probing additional facets of student attitudes and beliefs. It has been written to be suitably worded for students in a variety of different courses. This paper introduces the CLASS and its design and validation studies, which include analyzing results from over 2400 students, interviews and factor analyses. Methodology used to determine categories and how to analyze the robustness of categories for probing various facets of student learning are also described. This paper serves as the foundation for the results and conclusions from the analysis of our survey dat

    Imaging density disturbances in water with 41.3 attosecond time resolution

    Full text link
    We show that the momentum flexibility of inelastic x-ray scattering may be exploited to invert its loss function, alowing real time imaging of density disturbances in a medium. We show the disturbance arising from a point source in liquid water, with a resolution of 41.3 attoseconds (4.13×10−174.13 \times 10^{-17} sec) and 1.27 A˚\AA (1.27×10−81.27 \times 10^{-8} cm). This result is used to determine the structure of the electron cloud around a photoexcited molecule in solution, as well as the wake generated in water by a 9 MeV gold ion. We draw an analogy with pump-probe techniques and suggest that energy-loss scattering may be applied more generally to the study of attosecond phenomena.Comment: 4 pages, 4 color figure

    Topological oscillations of the magnetoconductance in disordered GaAs layers

    Full text link
    Oscillatory variations of the diagonal (GxxG_{xx}) and Hall (GxyG_{xy}) magnetoconductances are discussed in view of topological scaling effects giving rise to the quantum Hall effect. They occur in a field range without oscillations of the density of states due to Landau quantization, and are, therefore, totally different from the Shubnikov-de Haas oscillations. Such oscillations are experimentally observed in disordered GaAs layers in the extreme quantum limit of applied magnetic field with a good description by the unified scaling theory of the integer and fractional quantum Hall effect.Comment: 4 pages, 4 figure

    Disordered electron liquid in double quantum well heterostructures: Renormalization group analysis and dephasing rate

    Get PDF
    We report a detailed study of the influence of the electron-electron interaction on physical observables (conductance, etc.) of a disordered electron liquid in double quantum well heterostructure. We find that even in the case of common elastic scattering off electrons in both quantum wells, the asymmetry in the electron-electron interaction across and within quantum wells decouples them at low temperatures. Our results are in quantitative agreement with recent transport experiments on the gated double quantum well Alx_xGa1−x_{1-x}As/GaAs/Alx_xGa1−x_{1-x}As heterostructures.Comment: 15 pages; 5 figure
    • …
    corecore