232 research outputs found

    Functional Approach to Stochastic Inflation

    Full text link
    We propose functional approach to the stochastic inflationary universe dynamics. It is based on path integral representation of the solution to the differential equation for the scalar field probability distribution. In the saddle-point approximation scalar field probability distributions of various type are derived and the statistics of the inflationary-history-dependent functionals is developed.Comment: 20 pages, Preprint BROWN-HET-960, uses phyzz

    Degenerate Domain Wall Solutions in Supersymmetric Theories

    Full text link
    A family of degenerate domain wall configurations, partially preserving supersymmetry, is discussed in a generalized Wess-Zumino model with two scalar superfields. We establish some general features inherent to the models with continuously degenerate domain walls. For instance, for purely real trajectories additional "integrals of motion" exist. The solution for the profile of the scalar fields for any wall belonging to the family is found in quadratures for arbitrary ratio of the coupling constants. For a special value of this ratio the solution family is obtained explicitly in terms of elementary functions. We also discuss the threshold amplitudes for multiparticle production generated by these solutions. New unexpected nullifications of the threshold amplitudes are found.Comment: 21 pages, LaTeX, 3 figures using epsf.st

    Indication of Anisotropy in Electromagnetic Propagation over Cosmological Distances

    Full text link
    We report a systematic rotation of the plane of polarization of electromagnetic radiation propagating over cosmological distances. The effect is extracted independently from Faraday rotation, and found to be correlated with the angular positions and distances to the sources. Monte Carlo analysis yields probabilistic P-values of order 10^(-3) for this to occur as a fluctuation. A fit yields a birefringence scale of order 10^(25) meters. Dependence on redshift z rules out a local effect. Barring hidden systematic bias in the data, the correlation indicates a new cosmological effect.Comment: 5 pages, 1 figure, ReVTeX. For more information, see http://www.cc.rochester.edu/college/rtc/Borge/aniso.htm

    Bags, junctions, and networks of BPS and non-BPS defects

    Get PDF
    We investigate several models of coupled scalar fields that present discrete Z_2, Z_2 x Z_2, Z_3 and other symmetries. These models support topological domain wall solutions of the BPS and non-BPS type. The BPS solutions are stable, but the stability of the non-BPS solutions may depend on the parameters that specify the models. The BPS and non-BPS states give rise to bags, and also to three-junctions that may allow the presence of networks of topological defects. In particular, we show that the non-BPS defects of a specific model that engenders the Z_3 symmetry give rise to a stable regular hexagonal network of domain walls.Comment: Revtex, 16 pages, 6 ps figures; Shorter version to be published in Phys. Rev.

    Operator Product Expansion for Exclusive Decays: B^+ ->Ds^+ e+e- and B^+ -> Ds^{*+} e+e-

    Full text link
    The decays B+Ds,d+e+eB^+\to D_{s,d}^+e^+e^- and B+Ds,d+e+eB^+\to D_{s,d}^{*+}e^+e^- proceed through a weak and an electromagnetic interaction. This is a typical ``long distance'' process, usually difficult to compute systematically. We propose that over a large fraction of phase space a combination of an operator product and heavy quark expansions effectively turns this process into one in which the weak and electromagnetic interactions occur through a local operator. Moreover, we use heavy quark spin symmetry to relate all the local operators that appear in leading order of the operator expansion to two basic ones. We use this operator expansion to estimate the decay rates for B+Ds,d()+e+eB^+\to D_{s,d}^{(*)+}e^+e^-.Comment: 4 pages, 1 figure, Latex, published version in PR

    Cosmological status of Lagrangian theory of density perturbations

    Full text link
    We show that hydrodynamical and field approaches in theory of cosmological scalar perturbations are equivalent for a single medium. We also give relations between notations introduced by V. Lukash, J. Bardeen, J. Bardeen et al. and G. Chibisov and V. Mukhanov.Comment: 8 pages, no figures, submitted to Astronomy Report

    A note on second-order perturbations of non-canonical scalar fields

    Get PDF
    We study second-order perturbations for a general non-canonical scalar field, minimally coupled to gravity, on the unperturbed FRW background, where metric fluctuations are neglected a priori. By employing different approaches to cosmological perturbation theory, we show that, even in this simplified set-up, the second-order perturbations to the stress tensor, the energy density and the pressure display potential instabilities, which are not present at linear order. The conditions on the Lagrangian under which these instabilities take place are provided. We also discuss briefly the significance of our analysis in light of the possible linearization instability of these fields about the FRW background.Comment: 8 page, Revtex 4. Clarifications added, results unchanged; [v3] 10 pages, matches with the published version, Discussion for specific cases expanded and preliminary results including the metric perturbations discusse

    Normal modes for metric fluctuations in a class of higher-dimensional backgrounds

    Full text link
    We discuss a gauge invariant approach to the theory of cosmological perturbations in a higher-dimensonal background. We find the normal modes which diagonalize the perturbed action, for a scalar field minimally coupled to gravity, in a higher-dimensional manifold M of the Bianchi-type I, under the assumption that the translations along an isotropic spatial subsection of M are isometries of the full, perturbed background. We show that, in the absence of scalar field potential, the canonical variables for scalar and tensor metric perturbations satisfy exactly the same evolution equation, and we discuss the possible dependence of the spectrum on the number of internal dimensions.Comment: 19 pages, LATEX, an explicit example is added to discuss the possible dependence of the perturbation spectrum on the number of internal dimensions. To apper in Class. Quantum Gra

    Precision Studies of Duality in the 't Hooft Model

    Get PDF
    We address numerical aspects of local quark-hadron duality using the example of the exactly solvable 't Hooft model, two-dimensional QCD with N_c --> infinity. The primary focus of these studies is total semileptonic decay widths relevant for extracting |V_{cb}| and |V_{ub}|. We compare the exact channel-by-channel sum of exclusive modes to the corresponding rates obtained in the standard 1/m_Q expansion arising from the Operator Product Expansion. An impressive agreement sets in unexpectedly early, immediately after the threshold for the first hadronic excitation in the final state. Yet even at higher energy release it is possible to discern the seeds of duality-violating oscillations. We find the ``Small Velocity'' sum rules to be exceptionally well saturated already by the first excited state. We also obtain a convincing degree of duality in the differential distributions and in an analogue of R_{e^+e^-}(s). Finally, we discuss possible lessons for semileptonic decays of actual heavy quarks in QCD.Comment: 45 pages, 16 eps figures include

    Testing of CP, CPT and causality violation with the light propagation in vacuum in presence of the uniform electric and magnetic fields

    Full text link
    We have considered the structure of the fundamental symmetry violating part of the photon refractive index in vacuum in the presence of constant electric and magnetic fields. This part of the refractive index can, in principle, contain CPT symmetry breaking terms. Some of the terms violate Lorentz invariance, whereas the others violate locality and causality. Estimates of these effects, using laser experiments are considered.Comment: 12 page
    corecore