85 research outputs found

    The Fractional Quantum Hall Effect of Tachyons in a Topological Insulator Junction

    Full text link
    We have studied the tachyonic excitations in the junction of two topological insulators in the presence of an external magnetic field. The Landau levels, evaluated from an effective two-dimensional model for tachyons, and from the junction states of two topological insulators, show some unique properties not seen in conventional electrons systems or in graphene. The ν=1/3\nu=1/3 fractional quantum Hall effect has also a strong presence in the tachyon system.Comment: 5 pages, 3 figure

    Incomplete Photonic Bandgap as Inferred from the Speckle Pattern of Scattered Light Waves

    Full text link
    Motivated by recent experiments on intensity correlations of the waves transmitted through disordered media, we demonstrate that the speckle pattern from disordered photonic crystal with incomplete band-gap represents a sensitive tool for determination the stop-band width. We establish the quantitative relation between this width and the {\em angualar anisotropy} of the intensity correlation function.Comment: 6 pages, 3 figure

    Spin-torque switching: Fokker-Planck rate calculation

    Full text link
    We describe a new approach to understanding and calculating magnetization switching rates and noise in the recently observed phenomenon of "spin-torque switching". In this phenomenon, which has possible applications to information storage, a large current passing from a pinned ferromagnetic (FM) layer to a free FM layer switches the free layer. Our main result is that the spin-torque effect increases the Arrhenius factor exp(E/kT)\exp(-E/kT) in the switching rate, not by lowering the barrier EE, but by raising the effective spin temperature TT. To calculate this effect quantitatively, we extend Kramers' 1940 treatment of reaction rates, deriving and solving a Fokker-Planck equation for the energy distribution including a current-induced spin torque of the Slonczewski type. This method can be used to calculate slow switching rates without long-time simulations; in this Letter we calculate rates for telegraph noise that are in good qualitative agreement with recent experiments. The method also allows the calculation of current-induced magnetic noise in CPP (current perpendicular to plane) spin valve read heads.Comment: 11 pages, 8 figures, 1 appendix Original version in Nature format, replaced by Phys. Rev. Letters format. No substantive change

    Strongly Localized State of a Photon at the Intersection of the Phase Slips in 2D Photonic Crystal with Low Contrast of Dielectric Constant

    Full text link
    Two-dimensional photonic crystal with a rectangular symmetry and low contrast (< 1) of the dielectric constant is considered. We demonstrate that, despite the {\em absence} of a bandgap, strong localization of a photon can be achieved for certain ``magic'' geometries of a unit cell by introducing two π/2\pi/2 phase slips along the major axes. Long-living photon mode is bound to the intersection of the phase slips. We calculate analytically the lifetime of this mode for the simplest geometry -- a square lattice of cylinders of a radius, rr. We find the magic radius, rcr_c, of a cylinder to be 43.10 percent of the lattice constant. For this value of rr, the quality factor of the bound mode exceeds 10610^6. Small (1\sim 1%) deviation of rr from rcr_c results in a drastic damping of the bound mode.Comment: 6 pages, 2 figure

    Theory of anyon excitons: Relation to excitons of nu=1/3 and nu=2/3 incompressible liquids

    Get PDF
    Elementary excitations of incompressible quantum liquids (IQL's) are anyons, i.e., quasiparticles carrying fractional charges and obeying fractional statistics. To find out how the properties of these quasiparticles manifest themselves in the optical spectra, we have developed the anyon exciton model (AEM) and compared the results with the finite-size data for excitons of nu=1/3 and nu=2/3 IQL's. The model considers an exciton as a neutral composite consisting of three quasielectrons and a single hole. The AEM works well when the separation between electron and hole confinement planes, h, is larger than the magnetic length l. In the framework of the AEM an exciton possesses momentum k and two internal quantum numbers, one of which can be chosen as the angular momentum, L, of the k=0 state. Existence of the internal degrees of freedom results in the multiple branch energy spectrum, crater-like electron density shape and 120 degrees density correlations for k=0 excitons, and the splitting of the electron shell into bunches for non-zero k excitons. For h larger than 2l the bottom states obey the superselection rule L=3m (m are integers starting from 2), all of them are hard core states. For h nearly 2l there is one-to-one correspondence between the low-energy spectra found for the AEM and the many- electron exciton spectra of the nu=2/3 IQL, whereas some states are absent from the many-electron spectra of the nu=1/3 IQL. We argue that this striking difference in the spectra originates from the different populational statistics of the quasielectrons of charge conjugate IQL's and show that the proper account of the statistical requirements eliminates excessive states from the spectrum. Apparently, this phenomenon is the first manifestation of the exclusion statistics in the anyon bound states.Comment: 26 pages with 9 figures, typos correcte

    Structure of the Magneto-Exciton and Optical Properties in Fractional Quantum Hall Systems

    Full text link
    We report calculated dependence of magneto-exciton energy spectrum upon electron-hole separation dd in Fractional Quantum Hall systems. We calculated the dependence of photoluminescence upon dd, and we obtained the doublet structure observed recently. The Raman scattering spectrum around resonance is calculated: a robust resonance peak at ν=1/3\nu=1/3 around gap value is reported.Comment: 13 pages, REVTEX, compressed postscript file (3 figures included
    corecore