823 research outputs found

    Imaging 55^{55}Fe Electron Tracks in a GEM-based TPC Using a CCD Readout

    Full text link
    Images of resolved 5.9 keV electron tracks produced from 55^{55}Fe X-ray interactions are presented for the first time using an optical readout time projection chamber (TPC). The corresponding energy spectra are also shown, with the FWHM energy resolution in the 30-40\% range depending on gas pressure and gain. These tracks were produced in low pressure carbon tetrafluoride (CF4_4) gas, and imaged with a fast lens and low noise CCD camera system using the secondary scintillation produced in GEM/THGEM amplification devices. The GEM/THGEMs provided effective gas gains of 2×105\gtrsim 2 \times 10^5 in CF4_4 at low pressures in the 25-100 Torr range. The ability to resolve such low energy particle tracks has important applications in dark matter and other rare event searches, as well as in X-ray polarimetry. A practical application of the optical signal from 55^{55}Fe is that it provides a tool for mapping the detector gain spatial uniformity

    Measurement of Optical Attenuation in Acrylic Light Guides for a Dark Matter Detector

    Full text link
    Acrylic is a common material used in dark matter and neutrino detectors for light guides, transparent vessels, and neutron shielding, creating an intermediate medium between the target volume and photodetectors. Acrylic has low absorption within the visible spectrum and has a high capture cross section for neutrons. The natural radioactivity in photodetectors is a major source of background neutrons for low background detectors making the use of acrylic attractive for shielding and background reduction. To test the optical properties of acrylic we measured the transmittance and attenuation length of fourteen samples of acrylic from four different manufacturers. Samples were evaluated at five different wavelengths between 375 nm and 632 nm. We found that all samples had excellent transmittance at wavelengths greater than 550 nm. Transmittance was found to decrease below 550 nm. As expected, UV-absorbing samples showed a sharp decrease in transmittance below 425 nm compared to UV-transmitting samples. We report attenuation lengths for the three shortest wavelengths for comparison and discuss how the acrylic was evaluated for use in the MiniCLEAN single-phase dark matter detector.Comment: Accepted by JINST, version 2 with edits from reviewer comment

    Search for Free Fractional Electric Charge Elementary Particles

    Get PDF
    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied - about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71×10224.71\times10^{-22} particles per nucleon with 95% confidence.Comment: 10 pages,LaTeX, 4 PS figures, submitted to PR

    GEM-based TPC with CCD Imaging for Directional Dark Matter Detection

    Full text link
    The world's leading directional dark matter experiments currently all utilize low-pressure gas Time Projection Chamber (TPC) technologies. We discuss some of the challenges for this technology, for which balancing the goal of achieving the best sensitivity with that of cost effective scale-up requires optimization over a large parameter space. Critical for this are the precision measurements of the fundamental properties of both electron and nuclear recoil tracks down to the lowest detectable energies. Such measurements are necessary to provide a benchmark for background discrimination and directional sensitivity that could be used for future optimization studies for directional dark matter experiments. In this paper we describe a small, high resolution, high signal- to-noise GEM-based TPC with a 2D CCD readout designed for this goal. The performance of the detector was characterized using alpha particles, X-rays, gamma-rays, and neutrons, enabling detailed measurements of electron and nuclear recoil tracks. Stable effective gas gains of greater than 1×1051 \times 10^5 were obtained in 100 Torr of pure CF4_4 by a cascade of three standard CERN GEMs each with a 140 μ\mum pitch. The high signal-to-noise and sub-millimeter spatial resolution of the GEM amplification and CCD readout, together with low diffusion, allow for excellent background discrimination between electron and nuclear recoils down below \sim10 keVee (\sim23 keVr fluorine recoil). Even lower thresholds, necessary for the detection of low mass WIMPs for example, might be achieved by lowering the pressure and utilizing full 3D track reconstruction. These and other paths for improvements are discussed, as are possible fundamental limitations imposed by the physics of energy loss

    A New Method for Searching for Free Fractional Charge Particles in Bulk Matter

    Get PDF
    We present a new experimental method for searching for free fractional charge in bulk matter; this new method derives from the traditional Millikan liquid drop method, but allows the use of much larger drops, 20 to 100 mm in diameter, compared to the traditional method that uses drops less than 15 mm in diameter. These larger drops provide the substantial advantage that it is then much easier to consistently generate drops containing liquid suspensions of powdered meteorites and other special minerals. These materials are of great importance in bulk searches for fractional charge particles that may have been produced in the early universe.Comment: 17 pages, 5 figures in a singl PDF file (created from WORD Doc.). Submitted to Review of Scientific Instrument

    The DRIFT Dark Matter Experiments

    Full text link
    The current status of the DRIFT (Directional Recoil Identification From Tracks) experiment at Boulby Mine is presented, including the latest limits on the WIMP spin-dependent cross-section from 1.5 kg days of running with a mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale directional Dark Matter detector.Comment: Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201

    First measurement of the Head-Tail directional nuclear recoil signature at energies relevant to WIMP dark matter searches

    Get PDF
    We present first evidence for the so-called Head-Tail asymmetry signature of neutron-induced nuclear recoil tracks at energies down to 1.5 keV/amu using the 1m^3 DRIFT-IIc dark matter detector. This regime is appropriate for recoils induced by Weakly Interacting Massive Particle (WIMPs) but one where the differential ionization is poorly understood. We show that the distribution of recoil energies and directions induced here by Cf-252 neutrons matches well that expected from massive WIMPs. The results open a powerful new means of searching for a galactic signature from WIMPs.Comment: 4 pages, 6 figures, 1 tabl

    First Results from the DRIFT-IIa Dark Matter Detector

    Get PDF
    Data from the DRIFT-IIa directional dark matter experiment are presented, collected during a near continuous 6 month running period. A detailed calibration analysis comparing data from gamma-ray, x-ray and neutron sources to a GEANT4 Monte Carlo simulations reveals an efficiency for detection of neutron induced recoils of 94+/-2(stat.)+/-5(sys.)%. Software-based cuts, designed to remove non-nuclear recoil events, are shown to reject 60Co gamma-rays with a rejection factor of better than 8x10-6 for all energies above threshold. An unexpected event population has been discovered and is shown here to be due to the alpha-decay of 222Rn daughter nuclei that have attached to the central cathode. A limit on the flux of neutrons in the Boulby Underground Laboratory is derived from analysis of unshielded and shielded data.Comment: 43 pages, 14 figures, submitted to Astroparticle Physic

    Low Energy Electron and Nuclear Recoil Thresholds in the DRIFT-II Negative Ion TPC for Dark Matter Searches

    Get PDF
    Understanding the ability to measure and discriminate particle events at the lowest possible energy is an essential requirement in developing new experiments to search for weakly interacting massive particle (WIMP) dark matter. In this paper we detail an assessment of the potential sensitivity below 10 keV in the 1 m^3 DRIFT-II directionally sensitive, low pressure, negative ion time projection chamber (NITPC), based on event-by-event track reconstruction and calorimetry in the multiwire proportional chamber (MWPC) readout. By application of a digital smoothing polynomial it is shown that the detector is sensitive to sulfur and carbon recoils down to 2.9 and 1.9 keV respectively, and 1.2 keV for electron induced events. The energy sensitivity is demonstrated through the 5.9 keV gamma spectrum of 55Fe, where the energy resolution is sufficient to identify the escape peak. The effect a lower energy sensitivity on the WIMP exclusion limit is demonstrated. In addition to recoil direction reconstruction for WIMP searches this sensitivity suggests new prospects for applications also in KK axion searches
    corecore