2,867 research outputs found
Knowledge gaps in host-parasite interaction preclude accurate assessment of meat-borne exposure to Toxoplasma gondii
Prototype 9.7 m Schwarzschild-Couder telescope for the Cherenkov Telescope Array: status of the optical system
The Cherenkov Telescope Array (CTA) is an international project for a
next-generation ground-based gamma ray observatory, aiming to improve on the
sensitivity of current-generation experiments by an order of magnitude and
provide energy coverage from 30 GeV to more than 300 TeV. The 9.7m
Schwarzschild-Couder (SC) candidate medium-size telescope for CTA exploits a
novel aplanatic two-mirror optical design that provides a large field of view
of 8 degrees and substantially improves the off-axis performance giving better
angular resolution across all of the field of view with respect to
single-mirror telescopes. The realization of the SC optical design implies the
challenging production of large aspherical mirrors accompanied by a
submillimeter-precision custom alignment system. In this contribution we report
on the status of the implementation of the optical system on a prototype 9.7 m
SC telescope located at the Fred Lawrence Whipple Observatory in southern
Arizona.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC
2017), Busan, Korea. All CTA contributions at arXiv:1709.0348
Horn-Coupled, Commercially-Fabricated Aluminum Lumped-Element Kinetic Inductance Detectors for Millimeter Wavelengths
We discuss the design, fabrication, and testing of prototype horn-coupled,
lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic
microwave background (CMB) studies. The LEKIDs are made from a thin aluminum
film deposited on a silicon wafer and patterned using standard
photolithographic techniques at STAR Cryoelectronics, a commercial device
foundry. We fabricated twenty-element arrays, optimized for a spectral band
centered on 150 GHz, to test the sensitivity and yield of the devices as well
as the multiplexing scheme. We characterized the detectors in two
configurations. First, the detectors were tested in a dark environment with the
horn apertures covered, and second, the horn apertures were pointed towards a
beam-filling cryogenic blackbody load. These tests show that the multiplexing
scheme is robust and scalable, the yield across multiple LEKID arrays is 91%,
and the noise-equivalent temperatures (NET) for a 4 K optical load are in the
range 26\thinspace\pm6 \thinspace \mu \mbox{K} \sqrt{\mbox{s}}
A LEKID-based CMB instrument design for large-scale observations in Greenland
We present the results of a feasibility study, which examined deployment of a
ground-based millimeter-wave polarimeter, tailored for observing the cosmic
microwave background (CMB), to Isi Station in Greenland. The instrument for
this study is based on lumped-element kinetic inductance detectors (LEKIDs) and
an F/2.4 catoptric, crossed-Dragone telescope with a 500 mm aperture. The
telescope is mounted inside the receiver and cooled to K by a
closed-cycle He refrigerator to reduce background loading on the detectors.
Linearly polarized signals from the sky are modulated with a metal-mesh
half-wave plate that is rotated at the aperture stop of the telescope with a
hollow-shaft motor based on a superconducting magnetic bearing. The modular
detector array design includes at least 2300 LEKIDs, and it can be configured
for spectral bands centered on 150~GHz or greater. Our study considered
configurations for observing in spectral bands centered on 150, 210 and
267~GHz. The entire polarimeter is mounted on a commercial precision rotary air
bearing, which allows fast azimuth scan speeds with negligible vibration and
mechanical wear over time. A slip ring provides power to the instrument,
enabling circular scans (360 degrees of continuous rotation). This mount, when
combined with sky rotation and the latitude of the observation site, produces a
hypotrochoid scan pattern, which yields excellent cross-linking and enables
34\% of the sky to be observed using a range of constant elevation scans. This
scan pattern and sky coverage combined with the beam size (15~arcmin at
150~GHz) makes the instrument sensitive to in the angular
power spectra
PAPPA: Primordial Anisotropy Polarization Pathfinder Array
The Primordial Anisotropy Polarization Pathfinder Array (PAPPA) is a
balloon-based instrument to measure the polarization of the cosmic microwave
background and search for the signal from gravity waves excited during an
inflationary epoch in the early universe. PAPPA will survey a 20 x 20 deg patch
at the North Celestial Pole using 32 pixels in 3 passbands centered at 89, 212,
and 302 GHz. Each pixel uses MEMS switches in a superconducting microstrip
transmission line to combine the phase modulation techniques used in radio
astronomy with the sensitivity of transition-edge superconducting bolometers.
Each switched circuit modulates the incident polarization on a single detector,
allowing nearly instantaneous characterization of the Stokes I, Q, and U
parameters. We describe the instrument design and status.Comment: 12 pages, 9 figures. Proceedings of the Fundamental Physics With CMB
workshop, UC Irvine, March 23-25, 2006, to be published in New Astronomy
Review
ARCADE: Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission
The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission
(ARCADE) is a balloon-borne instrument designed to measure the temperature of
the cosmic microwave background at centimeter wavelengths. ARCADE searches for
deviations from a blackbody spectrum resulting from energy releases in the
early universe. Long-wavelength distortions in the CMB spectrum are expected in
all viable cosmological models. Detecting these distortions or showing that
they do not exist is an important step for understanding the early universe. We
describe the ARCADE instrument design, current status, and future plans.Comment: 12 pages, 6 figures. Proceedings of the Fundamental Physics With CMB
workshop, UC Irvine, March 23-25, 2006, to be published in New Astronomy
Review
- …
