8,105 research outputs found

    Saddle-point van Hove singularity and the phase diagram of high-Tc cuprates

    Full text link
    We examine the generic phase behavior of high-Tc cuprate superconductors in terms a universal van Hove singularity in the strongly overdoped region. Using a rigid ARPES-derived dispersion we solve the BCS gap equation and show that the pairing interaction or pairing energy cutoff must be a rapidly declining function of doping. This result is prejudicial to a phonon-based pairing interaction and more consistent with a magnetic or magnetically enhanced interaction.Comment: 5 pages, 2 figures, submitted to Physical Review

    The brightness distribution of IRC +10216 at 11 microns

    Get PDF
    The brightness distribution of IRC +10216 at a wavelength of 11 microns was measured in detail using a spatial interferometer. This brightness distribution appears to have azimuthal symmetry; an upper limit of 1.1 may be set to the ellipticity at 11 microns if the object has a major axis oriented either along or perpendicular to the major axis of the optical image. The radial distribution shows both compact and extended emission. The extended component, which is due to thermal emission from circumstellar dust, contributes 91% of the total flux and has a 1/e diameter of 0.90 minutes. The tapered shape of this component is consistent with a l/r squared dust density dependence. The compact component is unresolved (less than 0.2 minutes in diameter) and represents emission from the central star seen through the circumstellar envelope

    Thermodynamic properties of Bi2Sr2CaCu2O8 calculated from the electronic dispersion

    Full text link
    The electronic dispersion for Bi2Sr2CaCu2O(8+d) has been determined from angle-resolved photoelectron spectroscopy (ARPES). From this dispersion we calculate the entropy and superfluid density. Even with no adjustable parameters we obtain an exceptional match with experimental data across the entire phase diagram, thus indirectly confirming both the ARPES and thermodynamic data. The van Hove singularity is crossed in the overdoped region giving a distinctive linear-in-T temperature dependence in the superfluid density there.Comment: 5 pages, 4 figures, submitted to Physical Review Letter

    Variations in the spatial distribution of 11 Micron radiation from omicron Ceti

    Get PDF
    The spatial distribution of 11 micron radiation from omicron Ceti was observed at various phases of its light cycle using a stellar interferometer. Changes were seen which can be attributed to variation in the strength of thermal emission from circumstellar dust relative to the stellar continuum at 11 microns. These changes are shown to be correlated with the changes in luminosity of micron Ceti in such a way that dust grain emission at 11 microns was increased more than the continuum during the period of maximum luminosity. The degree of the change in dust grain emission implies that the maximum dust temperature is in the range of 500 K to 700 K during minimum stellar luminosity

    Crystal structures of four indole derivatives as possible cannabinoid allosteric antagonists

    Get PDF
    Acknowledgements We thank the EPSRC National Crystallography Service (University of Southampton) for the data collections and the EPSRC National Mass Spectrometry Service (University of Swansea) for the HRMS data. We thank John Low for carrying out the Cambridge Database survey.Peer reviewedPublisher PD

    Spatial heterodyne interferometry of VY Canis Major's, alpha Orionis, alpha Scorpii, and R leonis at 11 microns

    Get PDF
    Using the technique of heterodyne interferometry, measurements were made of the spatial distribution of 11 micron radiation from four late type stars. The circumstellar shells surrounding VY Canis Majoris, alpha Orionis, and alpha Scorpii were resolved, whereas that of R Leonis was only partially resolved at a fringe spacing of 0.4 sec

    Effluent sampling of Scout D and Delta launch vehicle exhausts

    Get PDF
    Characterization of engine-exhaust effluents (hydrogen chloride, aluminum oxide, carbon dioxide, and carbon monoxide) has been attempted by conducting field experiments monitoring the exhaust cloud from a Scout-Algol III vehicle launch and a Delta-Thor vehicle launch. The exhaust cloud particulate size number distribution (total number of particles as a function of particle diameter), mass loading, morphology, and elemental composition have been determined within limitations. The gaseous species in the exhaust cloud have been identified. In addition to the ground-based measurements, instrumented aircraft flights through the low-altitude, stabilized-exhaust cloud provided measurements which identified CO and HCI gases and Al2O3 particles. Measurements of the initial exhaust cloud during formation and downwind at several distances have established sampling techniques which will be used for experimental verification of model predictions of effluent dispersion and fallout from exhaust clouds

    Far-IR spectroscopy of the galactic center: Neutral and ionized gas in the central 10 pc of the galaxy

    Get PDF
    The 3P1 - 3P2 fine structure line emission from neutral atomic oxygen at 63 microns in the vicinity of the galactic center was mapped. The emission is extended over more than 4' (12 pc) along the galactic plane, centered on the position of Sgr A West. The line center velocities show that the O I gas is rotating around the galactic center with an axis close to that of the general galactic rotation, but there appear also to be noncircular motions. The rotational velocity at R is approximately 1 pc corresponds to a mass within the central pc of about 3 x 10(6) solar mass. Between 1 and 6 pc from the center the mass is approximately proportional to radius. The (O I) line probability arises in a predominantly neutral, atomic region immediately outside of the ionized central parsec of out galaxy. Hydrogen densities in the (O I) emitting region are 10(3) to 10(6) cm(-3) and gas temperatures are or = 100 K. The total integrated luminosity radiated in the line is about 10(5) solar luminosity, and is a substantial contribution to the cooling of the gas. Photoelectric heating or heating by ultraviolet excitation of H2 at high densities (10(5) cm(-3)) are promising mechanisms for heating of the gas, but heating due to dissipation of noncircular motions of the gas may be an alternative possibility. The 3P1 - 3P0 fine structure line of (O III) at 88 microns toward Sgr A West was also detected. The (O III) emission comes from high density ionized gas (n 10(4) cm(-3)), and there is no evidence for a medium density region (n 10(3) cm(-3)), such as the ionized halo in Sgr A West deduced from radio observations. This radio halo may be nonthermal, or may consist of many compact, dense clumps of filaments on the inner edges of neutral condensations at R or = 2 pc
    corecore