7,890 research outputs found
Structural relaxation in a system of dumbbell molecules
The interaction-site-density-fluctuation correlators, the dipole-relaxation
functions, and the mean-squared displacements of a system of symmetric
dumbbells of fused hard spheres are calculated for two representative
elongations of the molecules within the mode-coupling theory for the evolution
of glassy dynamics. For large elongations, universal relaxation laws for states
near the glass transition are valid for parameters and time intervals similar
to the ones found for the hard-sphere system. Rotation-translation coupling
leads to an enlarged crossover interval for the mean-squared displacement of
the constituent atoms between the end of the von Schweidler regime and the
beginning of the diffusion process. For small elongations, the superposition
principle for the reorientational -process is violated for parameters
and time intervals of interest for data analysis, and there is a strong
breaking of the coupling of the -relaxation scale for the diffusion
process with that for representative density fluctuations and for dipole
reorientations.Comment: 15 pages, 14 figures, Phys. Rev. E in pres
Dynamics in a supercooled molecular liquid: Theory and Simulations
We report extensive simulations of liquid supercooled states for a simple
three-sites molecular model, introduced by Lewis and Wahnstr"om [L. J. Lewis
and G. Wahnstr"om, Phys. Rev. E 50, 3865 (1994)] to mimic the behavior of
ortho-terphenyl. The large system size and the long simulation length allow to
calculate very precisely --- in a large q-vector range --- self and collective
correlation functions, providing a clean and simple reference model for
theoretical descriptions of molecular liquids in supercooled states. The time
and wavevector dependence of the site-site correlation functions are compared
with detailed predictions based on ideal mode-coupling theory, neglecting the
molecular constraints. Except for the wavevector region where the dynamics is
controlled by the center of mass (around 9 nm-1), the theoretical predictions
compare very well with the simulation data.
A mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid
Generalizing the mode-coupling theory for ideal liquid-glass transitions,
equations of motion are derived for the correlation functions describing the
glassy dynamics of a diatomic probe molecule immersed in a simple glass-forming
system. The molecule is described in the interaction-site representation and
the equations are solved for a dumbbell molecule consisting of two fused hard
spheres in a hard-sphere system. The results for the molecule's arrested
position in the glass state and the reorientational correlators for
angular-momentum index and near the glass transition are
compared with those obtained previously within a theory based on a
tensor-density description of the molecule in order to demonstrate that the two
approaches yield equivalent results. For strongly hindered reorientational
motion, the dipole-relaxation spectra for the -process can be mapped on
the dielectric-loss spectra of glycerol if a rescaling is performed according
to a suggestion by Dixon et al. [Phys. Rev. Lett. {\bf 65}, 1108 (1990)]. It is
demonstrated that the glassy dynamics is independent of the molecule's inertia
parameters.Comment: 19 pages, 10 figures, Phys. Rev. E, in prin
PT-Symmetric Electronics
We show both theoretically and experimentally that a pair of inductively
coupled active LRC circuits (dimer), one with amplification and another with an
equivalent amount of attenuation, display all the features which characterize a
wide class of non-Hermitian systems which commute with the joint parity-time PT
operator: typical normal modes, temporal evolution, and scattering processes.
Utilizing a Liouvilian formulation, we can define an underlying PT-symmetric
Hamiltonian, which provides important insight for understanding the behavior of
the system. When the PT-dimer is coupled to transmission lines, the resulting
scattering signal reveals novel features which reflect the PT-symmetry of the
scattering target. Specifically we show that the device can show two different
behaviors simultaneously, an amplifier or an absorber, depending on the
direction and phase relation of the interrogating waves. Having an exact
theory, and due to its relative experimental simplicity, PT-symmetric
electronics offers new insights into the properties of PT-symmetric systems
which are at the forefront of the research in mathematical physics and related
fields.Comment: 17 pages, 7 figure
Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems
Tungsten trioxide adopts a variety of structures which can be intercalated
with charged species to alter the electronic properties, thus forming `tungsten
bronzes'. Similar optical effects are observed upon removing oxygen from WO_3,
although the electronic properties are slightly different. Here we present a
computational study of cubic and hexagonal alkali bronzes and examine the
effects on cell size and band structure as the size of the intercalated ion is
increased. With the exception of hydrogen (which is predicted to be unstable as
an intercalate), the behaviour of the bronzes are relatively consistent. NaWO_3
is the most stable of the cubic systems, although in the hexagonal system the
larger ions are more stable. The band structures are identical, with the
intercalated atom donating its single electron to the tungsten 5d valence band.
Next, this was extended to a study of fractional doping in the Na_xWO_3 system
(0 < x < 1). A linear variation in cell parameter, and a systematic change in
the position of the Fermi level up into the valence band was observed with
increasing x. In the underdoped WO_3-x system however, the Fermi level
undergoes a sudden jump into the conduction band at around x = 0.2. Lastly,
three compounds of a layered WO_4×a,wdiaminoalkane hybrid series were
studied and found to be insulating, with features in the band structure similar
to those of the parent WO_3 compound which relate well to experimental
UV-visible spectroscopy results.Comment: 12 pages, 16 figure
In-Line-Test of Variability and Bit-Error-Rate of HfOx-Based Resistive Memory
Spatial and temporal variability of HfOx-based resistive random access memory
(RRAM) are investigated for manufacturing and product designs. Manufacturing
variability is characterized at different levels including lots, wafers, and
chips. Bit-error-rate (BER) is proposed as a holistic parameter for the write
cycle resistance statistics. Using the electrical in-line-test cycle data, a
method is developed to derive BERs as functions of the design margin, to
provide guidance for technology evaluation and product design. The proposed BER
calculation can also be used in the off-line bench test and build-in-self-test
(BIST) for adaptive error correction and for the other types of random access
memories.Comment: 4 pages. Memory Workshop (IMW), 2015 IEEE Internationa
Sexual experience, relationships, and factors associated with sexual and romantic satisfaction in the first Australian Trans & Gender Diverse Sexual Health Survey
Background: Sexual and romantic satisfaction are important aspects of sexual health and wellbeing, but they have not been thoroughly investigated among transgender and gender diverse (âtransâ) people in Australia. Aims: To address this gap and improve sexual health and wellbeing, we assessed the sexual behavior and relationships of a national sample of trans people in Australia, and factors associated with sexual and romantic satisfaction. Methods: We conducted a national survey of trans people from Australia in October-November 2018. Results: The sample included 1,613 trans participants, of whom 353 (21.9%) were men, 397 (24.6%) were women and 863 (53.5%) were non-binary. Over 70% of the sample had been sexually active in the previous year, and 56.9% were in a relationship, but only 32.4% were satisfied with the sexual aspects and 47.1% with the romantic aspects of their lives. Sexual satisfaction was associated with younger age, being asexual, having more trans friends, more frequent sex, and using illicit drugs in the context of sexual activity. Anxiety or fear about sex was associated with less sexual satisfaction, as was being in an open relationship. Romantic satisfaction was associated with younger age, having non-binary partners, and being in a current relationship (particularly a monogamous one). Recent distress, anxiety, or fear about sex were associated with less romantic satisfaction. Conclusion: Participants reported a broad range of sexual relationships, but low levels of satisfaction with the sexual and romantic aspects of their lives. The findings underscore the importance of supportive partners, access to social support and peer networks of trans people, as well as access to mental health support and sex-positive, trans affirming counseling in sexual health services
- âŠ