476 research outputs found
Differential engagement of anterior cingulate corte subdivisions for cognitive and emotional function.
Abstract Functional differentiation of dorsal (dACC) and rostral (rACC) anterior cingulate cortex for cognitive and emotional function has received considerable indirect support. Using fMRI, parallel tasks, and within-subject analysis, the present study directly tested the proposed specialization of ACC subdivisions. A Task  Region interaction confirmed more dACC activation during color-word distractors and more rACC activation during emotion-word distractors. Activity in ACC subdivisions differentially predicted behavioral performance. Connectivity with prefrontal and limbic regions also supported distinct dACC and rACC roles. Findings provide direct evidence for differential engagement of ACC subdivisions in cognitive and emotional processing and for differential functional connectivity in the implementation of cognitive control and emotion regulation. Results point to an anatomical and functional continuum rather than segregated operations
International Study of the Epidemiology of Paediatric Trauma : PAPSA Research Study
Objectives: Trauma is a significant cause of morbidity and mortality worldwide. The literature on paediatric trauma epidemiology in low- and middle-income countries (LMICs) is limited. This study aims to gather epidemiological data on paediatric trauma. Methods: This is a multicentre prospective cohort study of paediatric trauma admissions, over 1 month, from 15 paediatric surgery centres in 11 countries. Epidemiology, mechanism of injury, injuries sustained, management, morbidity and mortality data were recorded. Statistical analysis compared LMICs and high-income countries (HICs). Results: There were 1377 paediatric trauma admissions over 31 days; 1295 admissions across ten LMIC centres and 84 admissions across five HIC centres. Median number of admissions per centre was 15 in HICs and 43 in LMICs. Mean age was 7 years, and 62% were boys. Common mechanisms included road traffic accidents (41%), falls (41%) and interpersonal violence (11%). Frequent injuries were lacerations, fractures, head injuries and burns. Intra-abdominal and intra-thoracic injuries accounted for 3 and 2% of injuries. The mechanisms and injuries sustained differed significantly between HICs and LMICs. Median length of stay was 1 day and 19% required an operative intervention; this did not differ significantly between HICs and LMICs. No mortality and morbidity was reported from HICs. In LMICs, in-hospital morbidity was 4.0% and mortality was 0.8%. Conclusion: The spectrum of paediatric trauma varies significantly, with different injury mechanisms and patterns in LMICs. Healthcare structure, access to paediatric surgery and trauma prevention strategies may account for these differences. Trauma registries are needed in LMICs for future research and to inform local policy
Speech Communication
Contains reports on five research projects.C.J. Lebel FellowshipNational Institutes of Health (Grant 5 T32 NS07040)National Institutes of Health (Grant 5 R01 NS04332)National Science Foundation (Grant 1ST 80-17599)U.S. Navy - Naval Electronic Systems Command Contract (N00039-85-C-0254)U.S. Navy - Naval Electronic Systems Command Contract (N00039-85-C-0341)U.S. Navy - Naval Electronic Systems Command Contract (N00039-85-C-0290
Drosophila Nociceptors Mediate Larval Aversion to Dry Surface Environments Utilizing Both the Painless TRP Channel and the DEG/ENaC Subunit, PPK1
A subset of sensory neurons embedded within the Drosophila larval body wall have been characterized as high-threshold polymodal nociceptors capable of responding to noxious heat and noxious mechanical stimulation. They are also sensitized by UV-induced tissue damage leading to both thermal hyperalgesia and allodynia very similar to that observed in vertebrate nociceptors. We show that the class IV multiple-dendritic(mdIV) nociceptors are also required for a normal larval aversion to locomotion on to a dry surface environment. Drosophila melanogaster larvae are acutely susceptible to desiccation displaying a strong aversion to locomotion on dry surfaces severely limiting the distance of movement away from a moist food source. Transgenic inactivation of mdIV nociceptor neurons resulted in larvae moving inappropriately into regions of low humidity at the top of the vial reflected as an increased overall pupation height and larval desiccation. This larval lethal desiccation phenotype was not observed in wild-type controls and was completely suppressed by growth in conditions of high humidity. Transgenic hyperactivation of mdIV nociceptors caused a reciprocal hypersensitivity to dry surfaces resulting in drastically decreased pupation height but did not induce the writhing nocifensive response previously associated with mdIV nociceptor activation by noxious heat or harsh mechanical stimuli. Larvae carrying mutations in either the Drosophila TRP channel, Painless, or the degenerin/epithelial sodium channel subunit Pickpocket1(PPK1), both expressed in mdIV nociceptors, showed the same inappropriate increased pupation height and lethal desiccation observed with mdIV nociceptor inactivation. Larval aversion to dry surfaces appears to utilize the same or overlapping sensory transduction pathways activated by noxious heat and harsh mechanical stimulation but with strikingly different sensitivities and disparate physiological responses
Shared Pattern of Endocranial Shape Asymmetries among Great Apes, Anatomically Modern Humans, and Fossil Hominins
Anatomical asymmetries of the human brain are a topic of major interest because of their link with handedness and cognitive functions. Their emergence and occurrence have been extensively explored in human fossil records to document the evolution of brain capacities and behaviour. We quantified for the first time antero-posterior endocranial shape asymmetries in large samples of great apes, modern humans and fossil hominins through analysis of “virtual” 3D models of skull and endocranial cavity and we statistically test for departures from symmetry. Once based on continuous variables, we show that the analysis of these brain asymmetries gives original results that build upon previous analysis based on discrete traits. In particular, it emerges that the degree of petalial asymmetries differs between great apes and hominins without modification of their pattern. We indeed demonstrate the presence of shape asymmetries in great apes, with a pattern similar to modern humans but with a lower variation and a lower degree of fluctuating asymmetry. More importantly, variations in the position of the frontal and occipital poles on the right and left hemispheres would be expected to show some degree of antisymmetry when population distribution is considered, but the observed pattern of variation among the samples is related to fluctuating asymmetry for most of the components of the petalias. Moreover, the presence of a common pattern of significant directional asymmetry for two components of the petalias in hominids implicates that the observed traits were probably inherited from the last common ancestor of extant African great apes and Homo sapiens
Speech Communication
Contains table of contents for Part IV, table of contents for Section 1, an introduction, reports on seven research projects and a list of publications.C.J. Lebel FellowshipDennis Klatt Memorial FundNational Institutes of Health Grant T32-DC00005National Institutes of Health Grant R01-DC00075National Institutes of Health Grant F32-DC00015National Institutes of Health Grant R01-DC00266National Institutes of Health Grant P01-DC00361National Institutes of Health Grant R01-DC00776National Science Foundation Grant IRI 89-10561National Science Foundation Grant IRI 88-05680National Science Foundation Grant INT 90-2471
Speech Communication
Contains reports on five research projects.C.J. Lebel FellowshipNational Institutes of Health (Grant 5 T32 NSO7040)National Institutes of Health (Grant 5 R01 NS04332)National Institutes of Health (Grant 5 R01 NS21183)National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Grant 1 PO1-NS23734)National Science Foundation (Grant BNS 8418733)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0254)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0341)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0290)National Institutes of Health (Grant RO1-NS21183), subcontract with Boston UniversityNational Institutes of Health (Grant 1 PO1-NS23734), subcontract with the Massachusetts Eye and Ear Infirmar
Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement
This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)—the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome)
- …