832 research outputs found

    High-Resolution Spectroscopy from 3050 to 10000 A of the HDF-S QSO J2233-606 with UVES at the ESO VLT

    Get PDF
    We report on high-resolution observations (ℜ≃45000\Re \simeq 45000) of the Hubble Deep Field South QSO J2233-606 obtained with the VLT UV-Visual Echelle Spectrograph (UVES). We present spectral data for the wavelength region 3050<λ<100003050 < \lambda < 10000 \AA. The S/NS/N ratio of the final spectrum is about 50 per resolution element at 4000 \AA, 90 at 5000 \AA, 80 at 6000 \AA, 40 at 8000 \AA. Redshifts, column densities and Doppler widths of the absorption features have been determined with Voigt-profile fitting. A total of 621 lines have been measured. In particular 270 Ly-alpha lines, 41 Ly-beta and 24 systems containing metal lines have been identified. Together with other data in the literature, the present spectrum confirms that the evolution of the number density of Ly-alpha lines with log⁥N(\log N(\huno)>14) > 14 has an upturn at z∌1.4−1.6z \sim 1.4-1.6.Comment: 34 pages Latex, with 3 PostScript figures. Astronomical Journal, in press. A few revised upper limit

    Large-Scale Correlations in the Lyman-alpha Forest at z = 3-4

    Full text link
    We present a study of the spatial coherence of the intergalactic medium toward two pairs of high-redshift quasars with moderate angular separations observed with Keck/ESI, Q1422+2309A/Q1424+2255 (z_em = 3.63, theta = 39") and Q1439-0034A/B (z_em = 4.25, theta = 33"). The crosscorrelation of transmitted flux in the Lyman-alpha forest shows a 5-7 sigma peak at zero velocity lag for both pairs. This strongly suggests that at least some of the absorbing structures span the 230-300/h_70 proper kpc transverse separation between sightlines. We also statistically examine the similarity between paired spectra as a function of transmitted flux, a measure which may be useful for comparison with numerical simulations. In investigating the dependence of the correlation functions on spectral characteristics, we find that photon noise has little impact for S/N >~ 10 per resolution element. However, the agreement between the autocorrelation along the line sight and the crosscorrelation between sightlines, a potential test of cosmological geometry, depends significantly on instrumental resolution. Finally, we present an inventory of metal lines. These include a a pair of strong C IV systems at z ~ 3.4 appearing only toward Q1439B, and a Mg II + Fe II system present toward Q1439 A and B at z = 1.68.Comment: 33 pages, 13 figures, submitted to Ap

    Temperature and Kinematics of CIV Absorption Systems

    Full text link
    We use Keck HIRES spectra of three intermediate redshift QSOs to study the physical state and kinematics of the individual components of CIV selected heavy element absorption systems. Fewer than 8 % of all CIV lines with column densities greater than 10^{12.5} cm^{-2} have Doppler parameters b < 6 km/s. A formal decomposition into thermal and non-thermal motion using the simultaneous presence of SiIV gives a mean thermal Doppler parameter b_{therm}(CIV) = 7.2 km/s, corresponding to a temperature of 38,000 K although temperatures possibly in excess of 300,000 K occur occasionally. We also find tentative evidence for a mild increase of temperature with HI column density. Non-thermal motions within components are typically small (< 10 km/s) for most systems, indicative of a quiescent environment. The two-point correlation function (TPCF) of CIV systems on scales up to 500 km/s suggests that there is more than one source of velocity dispersion. The shape of the TPCF can be understood if the CIV systems are caused by ensembles of objects with the kinematics of dwarf galaxies on a small scale, while following the Hubble flow on a larger scale. Individual high redshift CIV components may be the building blocks of future normal galaxies in a hierarchical structure formation scenario.Comment: submitted to the ApJ Letters, March 16, 1996 (in press); (13 Latex pages, 4 Postscript figures, and psfig.sty included

    The Observability of Metal Lines Associated with the Lyman-alpha Forest

    Get PDF
    We develop a prescription for characterizing the strengths of metal lines associated with Lyman-alpha forest absorbers (LYFAs) of a given neutral hydrogen column density N_HI and metallicity [Fe/H]. This Line Observability Index (LOX) is line-specific and translates, for weak lines, into a measure of the equivalent width. It can be evaluated quickly for thousands of transitions within the framework of a given model of the Lyman-alpha forest, providing a ranking of the lines in terms of their strengths and enabling model builders to select the lines that should be detectable in observed spectra of a given resolution and signal-to-noise ratio. We compute the LOX for a large number of elements and transitions in two cosmological models of the Lyman-alpha forest at z=3 derived from a hydrodynamic simulation of structure formation, and we discuss how the LOX depends on redshift and on model parameters such as the mean baryonic density and radiation field. We find that the OVI (1032,1038) doublet is the best probe of the metallicity in low column density LYFAs N_{HI} \approx 10^{14.5} cm^{-2}). Metallicities down to [O/H] \sim -3 ([Fe/H] \sim -3.5 with the assumed [O/Fe] ratio) yield OVI absorption features that should be detectable in current high-quality spectra, provided that the expected position of the OVI feature is not contaminated by HI absorption. The strongest transitions in lower ionisation states of oxygen are OV(630), OIV(788), and OIII(833), and are likely to be detected with next generation UV instruments. Of the lines with rest wavelengths \lambda_r > 1216, which can potentially be observed redwards of the \lya forest, the CIV(1548,1551) doublet is expected to dominate in all LYFAs, regardless of the value of N_HI.Comment: Substantially revised version: larger line database, additional cosmological model analyzed. Accepted for Ap

    Hydrodynamical Simulations of the Lyman Alpha Forest: Model Comparisons

    Get PDF
    We investigate the properties of the Lyman alpha forest as predicted by numerical simulations for a range of currently viable cosmological models. This is done in order to understand the dependencies of the forest on cosmological parameters. Focusing on the redshift range from two to four, we show that: (1) most of the evolution in the distributions of optical depth, flux and column density can be understood by simple scaling relations, (2) the shape of optical depth distribution is a sensitive probe of the amplitude of density fluctuations on scales of a few hundred kpc, (3) the mean of the b distribution (a measure of the width of the absorption lines) is also very sensitive to fluctuations on these scales, and decreases as they increase. We perform a preliminary comparison to observations, where available. A number of other properties are also examined, including the evolution in the number of lines, the two-point flux distribution and the HeII opacity.Comment: 37 pages, 21 figures, submitted to Ap

    Correlation between the Mean Matter Density and the Width of the Saturated Lyman Alpha Absorption

    Full text link
    We report a scaling of the mean matter density with the width of the saturated Lyman alpha absorptions. This property is established using the ``pseudo-hydro'' technique (Croft et al. 1998). It provides a constraint for the inversion of the Lyman alpha forest, which encounters difficulty in the saturated region. With a Gaussian density profile and the scaling relation, a simple inversion of the simulated Lyman alpha forests shows that the one-dimensional mass power spectrum is well recovered on scales above 2 Mpc/h, or roughly k < 0.03 s/km, at z=3. The recovery underestimates the power on small scales, but improvement is possible with a more sophisticated algorithm.Comment: 7 pages, 9 figures, accepted for publication in MNRAS, replaced by the version after proo

    The Form and Evolution of the Clustering of QSO Heavy-Element Absorption-Line Systems

    Full text link
    We have analyzed the clustering of C IV and Mg II absorption-line systems on comoving scales from 1 to 16 \hMpc, using an extensive catalog of heavy-element QSO absorbers with mean redshift 2.2 (C IV) and 0.9 (Mg II). We find that, for the C IV sample as a whole, the absorber line-of-sight correlation function is well-fit by a power law with index Îł=1.75−0.70+0.50\gamma = 1.75 ^{+0.50}_{-0.70} and comoving correlation length r0=3.4−1.0+0.7r_0 = 3.4 ^{+0.7}_{-1.0} \hMpc (q0=0.5q_0=0.5). The clustering of absorbers at high redshift is thus of a form like that of galaxies and clusters at low redshift, and of amplitude such that absorbers are correlated on scales of galaxy clusters. We also trace the evolution of the mean amplitude Ο0(z)\xi_0(z) of the correlation function from z=3z=3 to z=0.9z=0.9. We find that, when parametrized as Ο0(z)∝(1+z)−(3+Ï”)+Îł\xi_0(z)\propto (1+z)^{-(3+\epsilon)+\gamma}, the amplitude grows rapidly with decreasing redshift, with maximum-likelihood value for the evolutionary parameter of Ï”=2.05±1.0\epsilon = 2.05 \pm 1.0 (q0=0.5q_0=0.5). When extrapolated to zero redshift, the correlation length is r0=30−13+22r_0 = 30 ^{+22}_{-13} \hMpc . This suggests that the strong C IV and Mg II absorbers, on megaparsec scales, are biased tracers of the higher-density regions of space, and that agglomerations of strong absorbers along a line of sight are indicators of clusters and superclusters. This is supported by recent observations of ``Lyman break'' galaxies. The rapid growth seen in the clustering of absorbers mimics that expected in a a critical universe from linear theory of gravitational instability, and is consistent with gravitationally induced growth of perturbations.Comment: 26 pages (LaTex, uses aaspp4.sty), with 8 encapsulated PostScript figures. Includes an augmented discussion of the close relationship between strong absorbers, clusters, and ``Lyman break'' galaxies. To appear in The Astrophysical Journal, vol. 500, June 10, 199

    The Local Effects of Cosmological Variations in Physical 'Constants' and Scalar Fields I. Spherically Symmetric Spacetimes

    Full text link
    We apply the method of matched asymptotic expansions to analyse whether cosmological variations in physical `constants' and scalar fields are detectable, locally, on the surface of local gravitationally bound systems such as planets and stars, or inside virialised systems like galaxies and clusters. We assume spherical symmetry and derive a sufficient condition for the local time variation of the scalar fields that drive varying constants to track the cosmological one. We calculate a number of specific examples in detail by matching the Schwarzschild spacetime to spherically symmetric inhomogeneous Tolman-Bondi metrics in an intermediate region by rigorously construction matched asymptotic expansions on cosmological and local astronomical scales which overlap in an intermediate domain. We conclude that, independent of the details of the scalar-field theory describing the varying `constant', the condition for cosmological variations to be measured locally is almost always satisfied in physically realistic situations. The proof of this statement provides a rigorous justification for using terrestrial experiments and solar system observations to constrain or detect any cosmological time variations in the traditional `constants' of Nature.Comment: 30 pages, 3 figures; corrected typo

    Physical conditions in the ISM towards HD185418

    Full text link
    We have developed a complete model of the hydrogen molecule as part of the spectral simulation code Cloudy. Our goal is to apply this to spectra of high-redshift star-forming regions where H2 absorption is seen, but where few other details are known, to understand its implication for star formation. The microphysics of H2 is intricate, and it is important to validate these numerical simulations in better-understood environments. This paper studies a well-defined line-of-sight through the Galactic interstellar medium (ISM) as a test of the microphysics and methods we use. We present a self-consistent calculation of the observed absorption-line spectrum to derive the physical conditions in the ISM towards HD185418, a line-of-sight with many observables. We deduce density, temperature, local radiation field, cosmic ray ionization rate, chemical composition and compare these conclusions with conditions deduced from analytical calculations. We find a higher density, similar abundances, and require a cosmic ray flux enhanced over the Galactic background value, consistent with enhancements predicted by MHD simulations.Comment: 31 pages, accepted for publication in Ap

    The explanation of unexpected temperature dependence of the muon catalysis in solid deuterium

    Full text link
    It is shown that due to the smallness of the inelastic cross-section of the dΌd\mu-atoms scattering in the crystal lattice at sufficiently low temperatures the ddΌdd\mu-mesomolecules formation from the upper state of the hyperfine structure dΌ(F=3/2)d\mu (F=3/2) starts earlier than the mesoatoms thermolization. It explains an approximate constancy of the ddΌdd\mu-mesomolecule formation rate in solid deuterium.Comment: 6 pages, 2 jpeg-figure
    • 

    corecore