18,021 research outputs found

    An effective theory of accelerated expansion

    Get PDF
    We work out an effective theory of accelerated expansion to describe general phenomena of inflation and acceleration (dark energy) in the Universe. Our aim is to determine from theoretical grounds, in a physically-motivated and model independent way, which and how many (free) parameters are needed to broadly capture the physics of a theory describing cosmic acceleration. Our goal is to make as much as possible transparent the physical interpretation of the parameters describing the expansion. We show that, at leading order, there are five independent parameters, of which one can be constrained via general relativity tests. The other four parameters need to be determined by observing and measuring the cosmic expansion rate only, H(z). Therefore we suggest that future cosmology surveys focus on obtaining an accurate as possible measurement of H(z)H(z) to constrain the nature of accelerated expansion (dark energy and/or inflation).Comment: In press; minor changes, results unchange

    Dual Instantons

    Get PDF
    We show how to map the Belavin-Polyakov instantons of the O(3)-nonlinear σ−\sigma-model to a dual theory where they then appear as nontopological solitons. They are stationary points of the Euclidean action in the dual theory, and moreover, the dual action and the O(3)-nonlinear σ−\sigma-model action agree on shell.Comment: 13 page

    Spin dynamics in electrochemically charged CdSe quantum dots

    Full text link
    We use time-resolved Faraday rotation to measure coherent spin dynamics in colloidal CdSe quantum dots charged in an electrochemical cell at room temperature. Filling of the 1Se electron level is demonstrated by the bleaching of the 1Se-1S3/2 absorption peak. One of the two Lande g-factors observed in uncharged quantum dots disappears upon filling of the 1Se electron state. The transverse spin coherence time, which is over 1 ns and is limited by inhomogeneous dephasing, also appears to increase with charging voltage. The amplitude of the spin precession signal peaks near the half-filling potential. Its evolution at charging potentials without any observable bleaching of the 1Se-1S3/2 transition suggests that the spin dynamics are influenced by low-energy surface states.Comment: 4 pages, 4 figure

    Shot Noise in Anyonic Mach-Zehnder Interferometer

    Get PDF
    We show how shot noise in an electronic Mach-Zehnder interferometer in the fractional quantum Hall regime probes the charge and statistics of quantum Hall quasiparticles. The dependence of the noise on the magnetic flux through the interferometer allows for a simple way to distinguish Abelian from non-Abelian quasiparticle statistics. In the Abelian case, the Fano factor (in units of the electron charge) is always lower than unity. In the non-Abelian case, the maximal Fano factor as a function of the magnetic flux exceeds one.Comment: references adde

    IR Kuiper Belt Constraints

    Get PDF
    We compute the temperature and IR signal of particles of radius aa and albedo α\alpha at heliocentric distance RR, taking into account the emissivity effect, and give an interpolating formula for the result. We compare with analyses of COBE DIRBE data by others (including recent detection of the cosmic IR background) for various values of heliocentric distance, RR, particle radius, aa, and particle albedo, α\alpha. We then apply these results to a recently-developed picture of the Kuiper belt as a two-sector disk with a nearby, low-density sector (40<R<50-90 AU) and a more distant sector with a higher density. We consider the case in which passage through a molecular cloud essentially cleans the Solar System of dust. We apply a simple model of dust production by comet collisions and removal by the Poynting-Robertson effect to find limits on total and dust masses in the near and far sectors as a function of time since such a passage. Finally we compare Kuiper belt IR spectra for various parameter values.Comment: 34 pages, LaTeX, uses aasms4.sty, 11 PostScript figures not embedded. A number of substantive comments by a particularly thoughtful referee have been addresse

    Composite Fermions in Modulated Structures: Transport and Surface Acoustic Waves

    Full text link
    Motivated by a recent experiment of Willett et al. [Phys. Rev. Lett. 78, 4478 (1997)], we employ semiclassical composite-fermion theory to study the effect of a periodic density modulation on a quantum Hall system near Landau level filling factor nu=1/2. We show that even a weak density modulation leads to dramatic changes in surface-acoustic-wave (SAW) propagation, and propose an explanation for several key features of the experimental observations. We predict that properly arranged dc transport measurements would show a structure similar to that seen in SAW measurements.Comment: Version published in Phys. Rev. Lett. Figures changed to show SAW velocity shift. LaTeX, 5 pages, two included postscript figure

    Serotonin Syndrome after Concomitant Treatment with Linezolid and Citalopram

    Get PDF
    Linezolid, a new synthetic antimicrobial, is an important weapon against methicillin-resistant Staphylococcus aureus (MRSA). Although there are reports of serotonin syndrome developing after concomitant use of linezolid and the selective serotonin reuptake inhibitor paroxitene, this report concerns a patient receiving citalopram who developed thrombocytopenia, serotonin syndrome, and lactic acidosis and died following long-term linezolid therap

    Growing supermassive black holes in the late stages of galaxy mergers are heavily obscured

    Get PDF
    Mergers of galaxies are thought to cause significant gas inflows to the inner parsecs, which can activate rapid accretion onto supermassive black holes (SMBHs), giving rise to Active Galactic Nuclei (AGN). During a significant fraction of this process, SMBHs are predicted to be enshrouded by gas and dust. Studying 52 galactic nuclei in infrared-selected local Luminous and Ultra-luminous infrared galaxies in different merger stages in the hard X-ray band, where radiation is less affected by absorption, we find that the amount of material around SMBHs increases during the last phases of the merger. We find that the fraction of Compton-thick (CT, N H≄1024 cm−2N_{\rm\,H}\geq 10^{24}\rm\,cm^{-2}) AGN in late merger galaxies is higher (f CT=65−13+12%f_{\rm\,CT}=65^{+12}_{-13}\%) than in local hard X-ray selected AGN (f CT=27±4%f_{\rm\,CT}=27\pm 4\%), and that obscuration reaches its maximum when the nuclei of the two merging galaxies are at a projected distance of D12≃0.4−10.8D_{12}\simeq0.4-10.8 kiloparsecs (f CT=77−17+13%f_{\rm\,CT}=77_{-17}^{+13}\%). We also find that all AGN of our sample in late merger galaxies have N H>1023 cm−2N_{\rm\,H}> 10^{23}\rm\,cm^{-2}, which implies that the obscuring material covers 95−8+4%95^{+4}_{-8}\% of the X-ray source. These observations show that the material is most effectively funnelled from the galactic scale to the inner tens of parsecs during the late stages of galaxy mergers, and that the close environment of SMBHs in advanced mergers is richer in gas and dust with respect to that of SMBHs in isolated galaxies, and cannot be explained by the classical AGN unification model in which the torus is responsible for the obscuration.Comment: Final version matching the article published in MNRAS - 30 pages, 16 figure

    The Calibration of the HST Kuiper Belt Object Search: Setting the Record Straight

    Get PDF
    The limiting magnitude of the HST data set used by Cochran et al. (1995) to detect small objects in the Kuiper belt is reevaluated, and the methods used are described in detail. It is shown, by implanting artificial objects in the original HST images, and re-reducing the images using our original algorithm, that the limiting magnitude of our images (as defined by the 50% detectability limit) is V=28.4V=28.4. This value is statistically the same as the value found in the original analysis. We find that ∌50\sim50% of the moving Kuiper belt objects with V=27.9V=27.9 are detected when trailing losses are included. In the same data in which these faint objects are detected, we find that the number of false detections brighter than V=28.8V=28.8 is less than one per WFPC2 image. We show that, primarily due to a zero-point calibration error, but partly due to inadequacies in modeling the HST'S data noise characteristics and Cochran et al.'s reduction techniques, Brown et al. 1997 underestimate the SNR of objects in the HST dataset by over a factor of 2, and their conclusions are therefore invalid.Comment: Accepted to ApJ Letters; 10 pages plus 3 figures, LaTe

    Scaling of excitons in carbon nanotubes

    Full text link
    Light emission from carbon nanotubes is expected to be dominated by excitonic recombination. Here we calculate the properties of excitons in nanotubes embedded in a dielectric, for a wide range of tube radii and dielectric environments. We find that simple scaling relationships give a good description of the binding energy, exciton size, and oscillator strength.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let
    • 

    corecore