2,830 research outputs found

    Djelotvorna primjena statističke kontrole procesa (SKP) rezanja uzdužno namotanih limova na škarama

    Get PDF
    This paper deals with the effective application of SPC on the lengthwise tonsure rolled plates process on double side scissors. After explanation of the SPC fundamentals, goals and mistakes during the SPC implementation, the methodical framework for the effective SPC application is defined. In the next part of the paper the description of practical application of SPC and its analysis from the point of view of this framework is accomplished.Ovaj članak opisuje djelotvornu primjenu SKP na proces rezanja uzdužno namotanih limova na škarama s dvostrukom oštricom. Nakon objašnjenja osnova SKP, ciljeva i grešaka kod primjene SKP, metodski okvir za efektivnu primjenu SKP je defi niran. Sljedi opis praktične primjene SKP i njegove analiza sa stajališta da je opisani okvir primjene kompletan

    Quantum oscillations in the parent pnictide BaFe2_2As2_2 : itinerant electrons in the reconstructed state

    Full text link
    We report quantum oscillation measurements that enable the direct observation of the Fermi surface of the low temperature ground state of \ba122. From these measurements we characterize the low energy excitations, revealing that the Fermi surface is reconstructed in the antiferromagnetic state, but leaving itinerant electrons in its wake. The present measurements are consistent with a conventional band folding picture of the antiferromagnetic ground state, placing important limits on the topology and size of the Fermi surface.Comment: 5 pages, 3 figure

    Metal-insulator transition in vanadium dioxide nanobeams: probing sub-domain properties of strongly correlated materials

    Full text link
    Many strongly correlated electronic materials, including high-temperature superconductors, colossal magnetoresistance and metal-insulator-transition (MIT) materials, are inhomogeneous on a microscopic scale as a result of domain structure or compositional variations. An important potential advantage of nanoscale samples is that they exhibit the homogeneous properties, which can differ greatly from those of the bulk. We demonstrate this principle using vanadium dioxide, which has domain structure associated with its dramatic MIT at 68 degrees C. Our studies of single-domain vanadium dioxide nanobeams reveal new aspects of this famous MIT, including supercooling of the metallic phase by 50 degrees C; an activation energy in the insulating phase consistent with the optical gap; and a connection between the transition and the equilibrium carrier density in the insulating phase. Our devices also provide a nanomechanical method of determining the transition temperature, enable measurements on individual metal-insulator interphase walls, and allow general investigations of a phase transition in quasi-one-dimensional geometry.Comment: 9 pages, 3 figures, original submitted in June 200

    Improved performance of the LHCb Outer Tracker in LHC Run 2

    Full text link
    The LHCb Outer Tracker is a gaseous detector covering an area of 5×6m25\times 6 m^2 with 12 double layers of straw tubes. The performance of the detector is presented based on data of the LHC Run 2 running period from 2015 and 2016. Occupancies and operational experience for data collected in ppp p, pPb and PbPb collisions are described. An updated study of the ageing effects is presented showing no signs of gain deterioration or other radiation damage effects. In addition several improvements with respect to LHC Run 1 data taking are introduced. A novel real-time calibration of the time-alignment of the detector and the alignment of the single monolayers composing detector modules are presented, improving the drift-time and position resolution of the detector by 20\%. Finally, a potential use of the improved resolution for the timing of charged tracks is described, showing the possibility to identify low-momentum hadrons with their time-of-flight.Comment: 29 pages, 20 figures, minor changes to match the published versio

    Lattice Blind Signatures with Forward Security

    Get PDF
    Blind signatures play an important role in both electronic cash and electronic voting systems. Blind signatures should be secure against various attacks (such as signature forgeries). The work puts a special attention to secret key exposure attacks, which totally break digital signatures. Signatures that resist secret key exposure attacks are called forward secure in the sense that disclosure of a current secret key does not compromise past secret keys. This means that forward-secure signatures must include a mechanism for secret-key evolution over time periods. This paper gives a construction of the first blind signature that is forward secure. The construction is based on the SIS assumption in the lattice setting. The core techniques applied are the binary tree data structure for the time periods and the trapdoor delegation for the key-evolution mechanism.Comment: ACISP 202

    A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets

    Get PDF
    OBJECTIVE: Historically, preoperative planning for functional neurosurgery has depended on the indirect localization of target brain structures using visible anatomical landmarks. However, recent technological advances in neuroimaging have permitted marked improvements in MRI-based direct target visualization, allowing for refinement of "first-pass" targeting. The authors reviewed studies relating to direct MRI visualization of the most common functional neurosurgery targets (subthalamic nucleus, globus pallidus, and thalamus) and summarize sequence specifications for the various approaches described in this literature. METHODS: The peer-reviewed literature on MRI visualization of the subthalamic nucleus, globus pallidus, and thalamus was obtained by searching MEDLINE. Publications examining direct MRI visualization of these deep brain stimulation targets were included for review. RESULTS: A variety of specialized sequences and postprocessing methods for enhanced MRI visualization are in current use. These include susceptibility-based techniques such as quantitative susceptibility mapping, which exploit the amount of tissue iron in target structures, and white matter attenuated inversion recovery, which suppresses the signal from white matter to improve the distinction between gray matter nuclei. However, evidence confirming the superiority of these sequences over indirect targeting with respect to clinical outcome is sparse. Future targeting may utilize information about functional and structural networks, necessitating the use of resting-state functional MRI and diffusion-weighted imaging. CONCLUSIONS: Specialized MRI sequences have enabled considerable improvement in the visualization of common deep brain stimulation targets. With further validation of their ability to improve clinical outcomes and advances in imaging techniques, direct visualization of targets may play an increasingly important role in preoperative planning
    corecore