234 research outputs found
Sparse square roots.
We show that it can be decided in polynomial time whether a graph of maximum degree 6 has a square root; if a square root exists, then our algorithm finds one with minimum number of edges. We also show that it is FPT to decide whether a connected n-vertex graph has a square root with at most n − 1 + k edges when this problem is parameterized by k. Finally, we give an exact exponential time algorithm for the problem of finding a square root with maximum number of edges
An exact algorithm for graph coloring with polynomial memory
In this paper, we give an algorithm that computes the chromatic number of a
graph in O(5.283n) time and polynomial memory
Paradigms for Parameterized Enumeration
The aim of the paper is to examine the computational complexity and
algorithmics of enumeration, the task to output all solutions of a given
problem, from the point of view of parameterized complexity. First we define
formally different notions of efficient enumeration in the context of
parameterized complexity. Second we show how different algorithmic paradigms
can be used in order to get parameter-efficient enumeration algorithms in a
number of examples. These paradigms use well-known principles from the design
of parameterized decision as well as enumeration techniques, like for instance
kernelization and self-reducibility. The concept of kernelization, in
particular, leads to a characterization of fixed-parameter tractable
enumeration problems.Comment: Accepted for MFCS 2013; long version of the pape
- …