404 research outputs found

    Generating Robust and Efficient Networks Under Targeted Attacks

    Full text link
    Much of our commerce and traveling depend on the efficient operation of large scale networks. Some of those, such as electric power grids, transportation systems, communication networks, and others, must maintain their efficiency even after several failures, or malicious attacks. We outline a procedure that modifies any given network to enhance its robustness, defined as the size of its largest connected component after a succession of attacks, whilst keeping a high efficiency, described in terms of the shortest paths among nodes. We also show that this generated set of networks is very similar to networks optimized for robustness in several aspects such as high assortativity and the presence of an onion-like structure

    Surface free energy of polyurethane coatings with improved hydrophobicity

    Get PDF
    The polarity of polyurethane coats was studied on the basis of the goniometric method for determination of wetting angle values, on the basis of calculated surface free energy (SFE) values by the van Oss–Good and Owens–Wendt methods, and on the basis of polarity measurements with the use of the 1H NMR spectra. Test polyurethanes were synthesised in the reaction of methylene diphenyl 4,4′-diisocyanate (MDI) or 3-izocyanatomethyl –3,5,5- trimethylcyclohexyl isocyanate (IPDI) and polyoxyethylene glycols or polyesters poly(ε-caprolactone) diols and poly(ethyleneadipate) diol with different molecular weights, and some diols as chain extenders, in dioxane. The type of raw material was found to significantly affect the phase structure of the obtained polyurethane elastomers and to control physical interactions within those structures, thus influencing the SFE values. Fundamental reduction in the SFE value of a coating below 28 mJ/m2 was achieved by the use of 2,2,3,3-tetrafluoro-1,4-butanediol as the urethane prepolymer chain extender

    Comparison of phase structures and surface free energy values for the coatings synthesised from linear polyurethanes and from waterborne polyurethane cationomers

    Get PDF
    WAXS, DSC and AFM methods were employed to compare phase structures of the coatings obtained from waterborne polyurethane cationomers which had been synthesised in the reaction of some diisocyanates (MDI, IPDI, TDI and HDI) with polyoxyethylene glycols (M = 600 and 2,000) and butane1,4-diol or N-methyl- or N-butyldiethanolamine and 2,2,3,3-tetrafluoro-1,4-butanediol. The structures were also analysed of the coatings derived from linear polyurethanes which had been synthesised on the basis of similar raw materials. Better rigidity was found for generally amorphous cationomer coats. Changes were discussed in the surface free energy (SFE) values and in their components, as calculated independently with the use of the van Oss–Good and Owens–Wendt methods. Polyurethane coats turned out more hydrophobic as compared to cationomer ones. In both coat types, fluorine incorporated into cationomers contributed to lower SFE values: from 50 down to about 30 mJ/m2

    Exotic Smoothness and Quantum Gravity

    Full text link
    Since the first work on exotic smoothness in physics, it was folklore to assume a direct influence of exotic smoothness to quantum gravity. Thus, the negative result of Duston (arXiv:0911.4068) was a surprise. A closer look into the semi-classical approach uncovered the implicit assumption of a close connection between geometry and smoothness structure. But both structures, geometry and smoothness, are independent of each other. In this paper we calculate the "smoothness structure" part of the path integral in quantum gravity assuming that the "sum over geometries" is already given. For that purpose we use the knot surgery of Fintushel and Stern applied to the class E(n) of elliptic surfaces. We mainly focus our attention to the K3 surfaces E(2). Then we assume that every exotic smoothness structure of the K3 surface can be generated by knot or link surgery a la Fintushel and Stern. The results are applied to the calculation of expectation values. Here we discuss the two observables, volume and Wilson loop, for the construction of an exotic 4-manifold using the knot 525_{2} and the Whitehead link WhWh. By using Mostow rigidity, we obtain a topological contribution to the expectation value of the volume. Furthermore we obtain a justification of area quantization.Comment: 16 pages, 1 Figure, 1 Table subm. Class. Quant. Grav

    The application of whole-body vibration in physiotherapy – A narrative review

    Get PDF
    Whole-body vibration (WBV) training is a very popular kind of practice in sport, fitness and physiotherapy. This work reviews the current knowledge regarding the use and effectiveness of WBV in the physiotherapy. The discrepancies between different authors’ results are probably due to divergence in WBV training protocols. The paperwork clearly showed that despite its ultimate effects, exercises on a vibration platform are safe, feasible, and well tolerated by patients with different disorders. This narrative review should help physiotherapists verify therapy programs regarding patients’ exposure to WBV

    Possible Gravitational Microlensing Events in the Optical Lightcurve of Active Galaxy S5 0716+714

    Get PDF
    A well-known active galaxy of the blazar type, S5 0716+714, is characterized by a particularly high variability duty cycle on short-time scales at optical frequencies. As such, the source was subjected to numerous monitoring programs, including both ground-based as well as space-borne telescopes. On closer inspection of the most recent accumulation of the data provided by the Transiting Exoplanet Survey Satellite, we have noticed several conspicuous events with `volcano-like' symmetric shape, lasting all for several hours, which closely resemble the achromatic events detected with the previous Whole Earth Blazar Telescope campaigns targeting the source. We propose that those peculiar features could be due to the gravitational micro-lensing of the innermost segments of the precessing jet in the system, by a binary lens. We study the magnification pattern of the lens with the inverse-ray shooting method, and the source trajectory parameters with the Python package MuLensModel. In this way, we were able to fit successfully all the selected events with a single lens, adjusting slightly only the source trajectory parameters for each lensing event. Based on the fit results, we postulate the presence of a massive binary lens, containing an intermediate-mass black hole, possibly even a super-massive one, and a much less massive companion (by a factor of 0.01\lesssim 0.01), located within the host galaxy of the blazar, most likely the central kiloparsec region. We discuss the major physical implications of the proposed scenario regarding the quest for the intermediate-mass and dual supermassive black holes in active galaxies.Comment: accepted for publication in the Astrophysical Journa

    Synthesis and characterisation of coating polyurethane cationomers containing fluorine built-in hard urethane segments

    Get PDF
    Polyurethane cationomers were synthesised in the reaction of 4,4’-methylenebis(phenyl isocyanate) with polyoxyethylene glycol (M = 2,000) or poly(tetrafluoroethyleneoxide-co-difluoromethylene oxide) α,ω-diisocyanate and N-methyl diethanolamine. Amine segments were built-in to the urethane-isocyanate prepolymer in the reaction with 1-bromobutane or formic acid, and then they were converted to alkylammonium cations. The obtained isocyanate prepolymers were then extended in the aqueous medium that yielded stable aqueous dispersions which were applied on the surfaces of test poly(tetrafluoroethylene) plates. After evaporation of water, the dispersions formed thin polymer coatings. 1H, 13C NMR and IR spectral methods were employed to confirm chemical structures of synthesised cationomers. Based on 1H NMR and IR spectra, the factors κ and α were calculated, which represented the polarity level of the obtained cationomers. The DSC, wide angle X-ray scattering and atom force microscopy methods were employed for the microstructural assessment of the obtained materials. Changes were discussed in the surface free energy and its components, as calculated independently according to the method suggested by van Oss–Good, in relation to chemical and physical structures of cationomers as well as morphology of coating surfaces obtained from those cationomers. Fluorine incorporated into cationomers (about 30%) contributed to lower surface free energy values, down to about 15 mJ/m2. That was caused by gradual weakening of long-range interactions within which the highest share is taken by dispersion interactions
    corecore