27 research outputs found

    Coherent spectroscopy of rare-earth-ion doped whispering-gallery mode resonators

    Full text link
    We perform an investigation into the properties of Pr3+:Y2SiO5 whispering gallery mode resonators as a first step towards achieving the strong coupling regime of cavity QED with rare-earth-ion doped crystals. Direct measurement of cavity QED parameters are made using photon echoes, giving good agreement with theoretical predictions. By comparing the ions at the surface of the resonator to those in the center it is determined that the physical process of making the resonator does not negatively affect the properties of the ions. Coupling between the ions and resonator is analyzed through the observation of optical bistability and normal-mode splitting.Comment: 8 pages, 9 figure

    Complete Characterization of Quantum-Optical Processes

    Full text link
    The technologies of quantum information and quantum control are rapidly improving, but full exploitation of their capabilities requires complete characterization and assessment of processes that occur within quantum devices. We present a method for characterizing, with arbitrarily high accuracy, any quantum optical process. Our protocol recovers complete knowledge of the process by studying, via homodyne tomography, its effect on a set of coherent states, i.e. classical fields produced by common laser sources. We demonstrate the capability of our protocol by evaluating and experimentally verifying the effect of a test process on squeezed vacuum.Comment: 5 pages, 4 figure

    Highly non-Gaussian states created via cross-Kerr nonlinearity

    Full text link
    We propose a feasible scheme for generation of strongly non-Gaussian states using the cross-Kerr nonlinearity. The resultant states are highly non-classical states of electromagnetic field and exhibit negativity of their Wigner function, sub-Poissonian photon statistics, and amplitude squeezing. Furthermore, the Wigner function has a distinctly pronounced ``banana'' or ``crescent'' shape specific for the Kerr-type interactions, which so far was not demonstrated experimentally. We show that creating and detecting such states should be possible with the present technology using electromagnetically induced transparency in a four-level atomic system in N-configuration.Comment: 12 pages, 7 figure

    Highly multimode memory in a crystal

    Full text link
    We experimentally demonstrate the storage of 1060 temporal modes onto a thulium-doped crystal using an atomic frequency comb (AFC). The comb covers 0.93 GHz defining the storage bandwidth. As compared to previous AFC preparation methods (pulse sequences i.e. amplitude modulation), we only use frequency modulation to produce the desired optical pumping spectrum. To ensure an accurate spectrally selective optical pumping, the frequency modulated laser is self-locked on the atomic comb. Our approach is general and should be applicable to a wide range of rare-earth doped material in the context of multimode quantum memory

    Propagation of Squeezed Vacuum under Electromagnetically Induced Transparency

    Get PDF
    We experimentally and theoretically analyze the transmission of continuous-wave and pulsed squeezed vacuum through rubidium vapor under the conditions of electromagnetically induced transparency. Frequency- and time-domain homodyne tomography is used to measure the quadrature noise and reconstruct the quantum states of the transmitted light. A simple theoretical model explains the spectrum and degradation of the transmitted squeezing with high precision

    Nanoceria Inhibit the Development and Promote the Regression of Pathologic Retinal Neovascularization in the Vldlr Knockout Mouse

    Get PDF
    Many neurodegenerative diseases are known to occur and progress because of oxidative stress, the presence of reactive oxygen species (ROS) in excess of the cellular defensive capabilities. Age related macular degeneration (AMD), diabetic retinopathy (DR) and inherited retinal degeneration share oxidative stress as a common node upstream of the blinding effects of these diseases. Knockout of the Vldlr gene results in a mouse that develops intraretinal and subretinal neovascular lesions within the first month of age and is an excellent model for a form of AMD called retinal angiomatous proliferation (RAP). Cerium oxide nanoparticles (nanoceria) catalytically scavenge ROS by mimicking the activities of superoxide dismutase and catalase. A single intravitreal injection of nanoceria into the Vldlr-/- eye was shown to inhibit: the rise in ROS in the Vldlr-/- retina, increases in vascular endothelial growth factor (VEGF) in the photoreceptor layer, and the formation of intraretinal and subretinal neovascular lesions. Of more therapeutic interest, injection of nanoceria into older mice (postnatal day 28) resulted in the regression of existing vascular lesions indicating that the pathologic neovessels require the continual production of excessive ROS. Our data demonstrate the unique ability of nanoceria to prevent downstream effects of oxidative stress in vivo and support their therapeutic potential for treatment of neurodegenerative diseases such as AMD and DR

    Spectral properties of rare-earth-ion doped whispering gallery mode resonators

    No full text
    We perform an investigation into the properties of Pr3+:Y2SiO5 whispering gallery mode resonators as a first step towards achieving the strong coupling regime of cavity QED with rare-earth-ion doped crystals. Direct measurement of cavity QED parameters are made using photon echoes, giving good agreement with theoretical predictions. By comparing the ions at the surface of the resonator to those in the center it is determined that the physical process of making the resonator does not negatively affect the properties of the ions. Coupling between the ions and resonator is analyzed through the observation of optical bistability and normal-mode splitting

    An investigation on the two-photon absorption activity of various terpyridines and related homoleptic and heteroleptic cationic Zn(II) complexes

    No full text
    The two-photon absorption (TPA) properties of various terpyridines of the kind [49-(C6H4-p-X)- 2,29:69,20-terpyridine] and related homoleptic and heteroleptic bis(terpyridine) cationic zinc(II) complexes were investigated by the TPA induced photoluminescence (TPA-PL) method in a femtosecond regime. It appeared that terpyridines bearing an X donor group are characterized by TPA cross sections among the largest ever reported for a molecule with a dipole symmetry whereas coordination to a Zn(II) center leads to a decrease of the TPA response
    corecore