743 research outputs found

    A phase II multi-institutional study assessing simultaneous in-field boost helical tomotherapy for 1-3 brain metastases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our research group has previously published a dosimetric planning study that demonstrated that a 60 Gy/10 fractions intralesional boost with whole-brain radiotherapy (WBRT) to 30 Gy/10 fractions was biologically equivalent with a stereotactic radiosurgery (SRS) boost of 18 Gy/1 fraction with 30 Gy/10 fractions WBRT. Helical tomotherapy (HT) was found to be dosimetrically equivalent to SRS in terms of target coverage and superior to SRS in terms of normal tissue tolerance. A phase I trial has been now completed at our institution with a total of 60 enrolled patients and 48 evaluable patients. The phase II dose has been determined to be the final phase I cohort dose of 60 Gy/10 fractions.</p> <p>Methods/Design</p> <p>The objective of this clinical trial is to subject the final phase I cohort dose to a phase II assessment of the endpoints of overall survival, intracranial control (ICC) and intralesional control (ILC). We hypothesize HT would be considered unsuitable for further study if the median OS for patients treated with the HT SIB technique is degraded by 2 months, or the intracranial progression-free rates (ICC and ILC) are inferior by 10% or greater compared to the expected results with treatment by whole brain plus SRS as defined by the RTOG randomized trial. A sample size of 93 patients was calculated based on these parameters as well as the statistical assumptions of alpha = 0.025 and beta = 0.1 due to multiple statistical testing. Secondary assessments of toxicity, health-related quality-of-life, cognitive changes, and tumor response are also integrated into this research protocol.</p> <p>Discussion</p> <p>To summarize, the purpose of this phase II trial is to assess this non-invasive alternative to SRS in terms of central nervous system (CNS) control when compared to SRS historical controls. A follow-up phase III trial may be required depending on the results of this trial in order to definitively assess non-inferiority/superiority of this approach. Ultimately, the purpose of this line of research is to provide patients with metastatic disease to the brain a shorter course, dose intense, non-invasive radiation treatment with equivalent or improved CNS control/survival and health-related quality-of-life/toxicity profile when compared to SRS radiotherapy.</p> <p>Trial registration</p> <p>Clinicaltrials.gov - <a href="http://www.clinicaltrials.gov/ct2/show/NCT01543542">NCT01543542</a>.</p

    Simultaneous in-field boost for patients with 1 to 4 brain metastasis/es treated with volumetric modulated arc therapy: a prospective study on quality-of-life

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To assess treatment toxicity and patients' survival/quality of life (QoL) after volumetric modulated arc therapy (VMAT) with simultaneous in-field boost (SIB) for cancer patients with 1 - 4 brain metastases (BM) treated with or without surgery.</p> <p>Methods and Materials</p> <p>Between March and December 2010, 29 BM patients (total volume BM, < 40 cm<sup>3</sup>) aged < 80 years, KPS ≥ 70, RPA < III were included in this prospective trial. Whole brain VMAT (30 Gy) and a SIB to the BM (40 Gy) was delivered in 10 fraction. Mean age was 62.1 ± 8.5 years. Fifteen (51.7%) underwent surgery. KPS and MMSE were prospectively assessed. A self-assessed questionnaire was used to assess the QoL (EORTC QLQ-C30 with -BN20 module).</p> <p>Results</p> <p>As of April 2011 and after a mean FU of 5.4 ± 2.8 months, 14 (48.3%) patients died. The 6-month overall survival was 55.1%. Alopecia was only observed in 9 (31%) patients. In 3-month survivors, KPS was significantly (<it>p </it>= 0.01) decreased. MMSE score remained however stable (<it>p </it>= 0.33). Overall, QoL did decrease after VMAT. The mean QLQ-C30 global health status (<it>p </it>= 0.72) and emotional functional (<it>p </it>= 0.91) scores were decreased (low QoL). Physical (<it>p </it>= 0.05) and role functioning score (<it>p </it>= 0.01) were significantly worse and rapidly decreased during treatment. The majority of BN20 domains and single items worsened 3 months after VMAT except headaches (<it>p </it>= 0.046) and bladder control (<it>p </it>= 0.26) which improved.</p> <p>Conclusions</p> <p>The delivery of 40 Gy in 10 fractions to 1 - 4 BM using VMAT was achieved with no significant toxicity. QoL, performance status, but not MMSE, was however compromised 3 months after treatment in this selected cohort of BM patients.</p

    Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>to investigate the factors affecting survival and toxicity in patients treated with stereotactic radiosurgery (SRS), with special attention to volumes of brain receiving a specific dose (V10 - V16 Gy) as predictors for brain radionecrosis.</p> <p>Patients and Methods</p> <p>Two hundred six consecutive patients with 310 cerebral metastases less than 3.5 cm were treated with SRS as primary treatment and followed prospectively at University of Rome La Sapienza Sant'Andrea Hospital. Overall survival, brain control, and local control were estimated using the Kaplan-Meier method calculated from the time of SRS. Univariate and multivariate analysis using a Cox proportional hazards regression model were performed to determine the predictive value of prognostic factors for treatment outcome and SRS-related complications.</p> <p>Results</p> <p>Median overall survival and brain control were 14.1 months and 10 months, respectively. The 1-year and 2-year survival rates were 58% and 24%, and respective brain control were 43% and 22%. Sixteen patients recurred locally after SRS, with 1-year and 2-year local control rates of 92% and 84%, respectively. On multivariate analysis, stable extracranial disease and KPS >70 were associated with the most significant survival benefit. Neurological complications were recorded in 27 (13%) patients. Severe neurological complications (RTOG Grade 3 and 4) occurred in 5.8% of patients. Brain radionecrosis occurred in 24% of treated lesions, being symptomatic in 10% and asymptomatic in 14%. On multivariate analysis, V10 through V16 Gy were independent risk factors for radionecrosis, with V10 Gy and V12 Gy being the most predictive (p = 0.0001). For V10 Gy >12.6 cm<sup>3 </sup>and V12 Gy >10.9 cm<sup>3 </sup>the risk of radionecrosis was 47%.</p> <p>Conclusions</p> <p>SRS alone represents a feasible option as initial treatment for patients with brain metastases, however a significant subset of patients may develop neurological complications. Lesions with V12 Gy >8.5 cm<sup>3 </sup>carries a risk of radionecrosis >10% and should be considered for hypofractionated stereotactic radiotherapy especially when located in/near eloquent areas.</p

    Optically-guided frameless linac-based radiosurgery for brain metastases: clinical experience

    Get PDF
    The purpose of this study was to describe our clinical experience using optically-guided linear accelerator (linac)-based frameless stereotactic radiosurgery (SRS) for the treatment of brain metastases. Sixty-five patients (204 lesions) were treated between 2005 and 2008 with frameless SRS using an optically-guided bite-block system. Patients had a median of 2 lesions (range, 1–13). Prescription dose ranged from 14 to 22 Gy (median, 18 Gy) and was given in a single fraction. Clinical and radiographic evaluation occurred every 2–4 months following treatment. At a median follow-up of 6.2 months, actuarial survival at 12 months was 40% [95% confidence interval (CI), 28–52). Of 135 lesions that were evaluable for local control (LC), 119 lesions (88%) did not show evidence of progression. Actuarial 12 month LC was 76% (95% CI, 66–86). Tumors ≤2 cm in size had a better 12 month LC rate (81% vs. 36%, P = 0.017) than those >2 cm. Adverse events occurred in three patients (5%). Optically-guided linac-based frameless SRS can produce clinical outcomes that compare favorably to frame-based techniques. As this technique is convenient to use and allows for the uncomplicated delivery of hypofractionated radiotherapy, frameless SRS will likely have an increasingly important role in the management of brain metastases

    Anti-cancer effects and mechanism of actions of aspirin analogues in the treatment of glioma cancer

    Get PDF
    INTRODUCTION: In the past 25 years only modest advancements in glioma treatment have been made, with patient prognosis and median survival time following diagnosis only increasing from 3 to 7 months. A substantial body of clinical and preclinical evidence has suggested a role for aspirin in the treatment of cancer with multiple mechanisms of action proposed including COX 2 inhibition, down regulation of EGFR expression, and NF-κB signaling affecting Bcl-2 expression. However, with serious side effects such as stroke and gastrointestinal bleeding, aspirin analogues with improved potency and side effect profiles are being developed. METHOD: Effects on cell viability following 24 hr incubation of four aspirin derivatives (PN508, 517, 526 and 529) were compared to cisplatin, aspirin and di-aspirin in four glioma cell lines (U87 MG, SVG P12, GOS – 3, and 1321N1), using the PrestoBlue assay, establishing IC50 and examining the time course of drug effects. RESULTS: All compounds were found to decrease cell viability in a concentration and time dependant manner. Significantly, the analogue PN517 (IC50 2mM) showed approximately a twofold increase in potency when compared to aspirin (3.7mM) and cisplatin (4.3mM) in U87 cells, with similar increased potency in SVG P12 cells. Other analogues demonstrated similar potency to aspirin and cisplatin. CONCLUSION: These results support the further development and characterization of novel NSAID derivatives for the treatment of glioma

    Long Term Follow-Up of the Endovascular Trans-Vessel Wall Technique for Parenchymal Access in Rabbit with Full Clinical Integration

    Get PDF
    OBJECTIVE: Endovascular techniques are providing options to surgical/percutaneous cell transplantation methods. Some cells, e.g. insulin producing cells, are not suitable for intra-luminal transplantation and for such cells, other options must be found. We have constructed a "nanocatheter" with a penetrating tip for vessel perforation, thereby creating a working channel for parenchymal access by endovascular technique. To finish the procedure safely, the distal tip is detached to provide a securing plug in the vessel wall defect. MATERIALS AND METHODS: We have performed interventions with full clinical integration in the superior mesenteric artery (SMA), the subclavian artery and the external carotid artery in rabbits. No hemorrhagic- or thromboembolic events occurred during the procedure. Stenosis formation and distal embolisation were analyzed by angiography and macroscopic inspection during autopsy at five, 30 and 80 days. All animals and implanted devices were also evaluated by micro-dissections and histochemical analysis. RESULTS: In this study we show safety data on the trans-vessel wall technique by behavioral, angiographical and histological analysis. No stenosis formation was observed at any of the follow-up time points. No animals or organs have shown any signs of distress due to the intervention. Histological examination showed no signs of hemorrhage, excellent biocompatibility with no inflammation and a very limited fibrous capsule formation around the device, comparable to titanium implants. Further, no histological changes were detected in the endothelia of the vessels subject to intervention. CONCLUSIONS: The trans-vessel wall technique can be applied for e.g. cell transplantations, local substance administration and tissue sampling with low risk for complications during the procedure and low risk for hemorrhage, stenosis development or adverse tissue reactions with an 80 days follow-up time. The benefit should be greatest in organs that are difficult or risky to reach with surgical techniques, such as the pancreas, the CNS and the heart

    FACT-MNG: tumor site specific web-based outcome instrument for meningioma patients

    Get PDF
    To formulate Functional Assessment of Cancer Therapy-Meningioma (FACT-MNG), a web-based tumor site-specific outcome instrument for assessing intracranial meningioma patients following surgical resection or stereotactic radiosurgery. We surveyed the relevant literature available on intracranial meningioma surgery and subsequent outcomes (38 papers), making note of which, if any, QOL/outcome instruments were utilized. None of the surgveyed papers included QOL assessment specific to tumor site. We subsequently developed questions that were relevant to the signs and symptoms that characterize each of 11 intracranial meningioma sites, and incorporated them into a modified combination of the Functional Assessment of Cancer Therapy-Brain (FACT-BR) and SF36 outcome instruments, thereby creating a new tumor site-specific outcome instrument, FACT-MNG. With outcomes analysis of surgical and radiosurgical treatments becoming more important, measures of the adequacy and success of treatment are needed. FACT-MNG represents a first effort to formalize such an instrument for meningioma patients. Questions specific to tumor site will allow surgeons to better assess specific quality of life issues not addressed in the past by more general questionnaires
    corecore