116 research outputs found

    Poly[[tetra­kis­(μ2-pyrazine N,N′-dioxide-κ2 O:O′)erbium(III)] tris­(perchlorate)]

    Get PDF
    The title three-dimensional coordination network, {[Er(C4H4N2O2)4](ClO4)3}n, is isostructural to that of other lanthanides. The Er+3 cation lies on a fourfold roto-inversion axis. It is coordinated in a distorted square-anti­prismatic fashion by eight O atoms from bridging pyrazine N,N′-dioxide ligands. There are two unique pyrazine N,N′-dioxide ligands. One ring is located around an inversion center, and there is a a twofold rotation axis at the center of the other ring. There are also two unique perchlorate anions. One is centered on a twofold rotation axis and the other on a fourfold roto-inversion axis. The perchlorate anions are located in channels that run perpendicular to (001) and (110) and inter­act with the coordination network through C—H⋯O hydrogen bonds

    Poly[[tetra­kis­(μ2-pyrazine N,N′-dioxide-κ2 O:O′)holmium(III)] tris­(perchlorate)]

    Get PDF
    The title three-dimensional coordination network, {[Ho(C4H4N2O2)4](ClO4)3}n, is isostructural to that of other lanthanides. The Ho+3 cation lies on a fourfold roto-inversion axis. It is coordinated in a distorted square anti-prismatic fashion by eight O atoms from bridging pyrazine N,N′-dioxide ligands. There are two unique pyrazine N,N′-dioxide ligands. One ring is located around an inversion center, and there is a a twofold rotation axis at the center of the other ring. There are also two unique perchlorate anions. One is centered on a twofold rotation axis and the other on a fourfold roto-inversion axis. The perchlorate anions are located in channels that run perpendicular to (001) (110) and inter­act with the coordination network through C—H⋯O hydrogen bonds

    Cross-sectional field study comparing hippocampal subfields in patients with post-traumatic stress disorder, major depressive disorder, post-traumatic stress disorder with comorbid major depressive disorder, and adjustment disorder using routine clinical data

    Get PDF
    BackgroundThe hippocampus is a central brain structure involved in stress processing. Previous studies have linked stress-related mental disorders, such as post-traumatic stress disorder (PTSD) and major depressive disorder (MDD), with changes in hippocampus volume. As PTSD and MDD have similar symptoms, clinical diagnosis relies solely on patients reporting their cognitive and emotional experiences, leading to an interest in utilizing imaging-based data to improve accuracy. Our field study aimed to determine whether there are hippocampal subfield volume differences between stress-related mental disorders (PTSD, MDD, adjustment disorders, and AdjD) using routine clinical data from a military hospital.MethodsParticipants comprised soldiers (N = 185) with PTSD (n = 50), MDD (n = 70), PTSD with comorbid MDD (n = 38), and AdjD (n = 27). The hippocampus was segmented and volumetrized into subfields automatically using FreeSurfer. We used ANCOVA models with estimated total intracranial volume as a covariate to determine whether there were volume differences in the hippocampal subfields cornu ammonis 1 (CA1), cornu ammonis 2/3 (CA2/3), and dentate gyrus (DG) among patients with PTSD, MDD, PTSD with comorbid MDD, and AdjD. Furthermore, we added self-reported symptom duration and previous psychopharmacological and psychotherapy treatment as further covariates to examine whether there were associations with CA1, CA2/3, and DG.ResultsNo significant volume differences in hippocampal subfields between stress-related mental disorders were found. No significant associations were detected between symptom duration, psychopharmacological treatment, psychotherapy, and the hippocampal subfields.ConclusionHippocampal subfields may distinguish stress-related mental disorders; however, we did not observe any subfield differences. We provide several explanations for the non-results and thereby inform future field studies

    A high-throughput immobilized bead screen for stable proteins and multi-protein complexes

    Get PDF
    We describe an in vitro colony screen to identify Escherichia coli expressing soluble proteins and stable, assembled multiprotein complexes. Proteins with an N-terminal 6His tag and C-terminal green fluorescent protein (GFP) S11 tag are fluorescently labeled in cells by complementation with a coexpressed GFP 1–10 fragment. After partial colony lysis, the fluorescent soluble proteins or complexes diffuse through a supporting filtration membrane and are captured on Talon® resin metal affinity beads immobilized in agarose. Images of the fluorescent colonies convey total expression and the level of fluorescence bound to the beads indicates how much protein is soluble. Both pieces of information can be used together when selecting clones. After the assay, colonies can be picked and propagated, eliminating the need to make replica plates. We used the method to screen a DNA fragment library of the human protein p85 and preferentially obtained clones expressing the full-length ‘breakpoint cluster region-homology' and NSH2 domains. The assay also distinguished clones expressing stable multi-protein complexes from those that are unstable due to missing subunits. Clones expressing stable, intact heterotrimeric E.coli YheNML complexes were readily identified in libraries dominated by complexes of YheML missing the N subunit

    Palaeoenvironment of Eocene prodelta in Spitsbergen recorded by the trace fossil Phycosiphon incertum

    Get PDF
    Ichnological, sedimentological and geochemical analyses were conducted on the Eocene Frysjaodden Formation in order to interpret palaeoenvironment prodelta sediments in the Central Basin of Spitsbergen. Phycosiphon incertum is the exclusive ichnotaxon showing differences in size, distribution, abundance and density, and relation to laminated/bioturbated intervals. Large P. incertum mainly occur dispersed, isolated and randomly distributed throughout the weakly laminated/non-laminated intervals. Small P. incertum occur occasionally in patches of several burrows within laminated intervals or as densely packed burrows in thin horizons in laminated intervals or constituting fully bioturbated intervals that are several centimetres thick. Ichnological changes are mainly controlled by oxygenation, although the availability of benthic food cannot be discarded. Changes in oxygenation and rate of sedimentation can be correlated with the registered variations in the Bouma sequence of the distal turbiditic beds within prodeltal shelf sediments.Funding for this research was provided by Project CGL2012-33281 (SecretarĂ­a de Estado de InvestigaciĂłn, Desarrollo e InnovaciĂłn, Spain), Project RYC-2009-04316 (RamĂłn y Cajal Programme) and Projects RNM-3715 and RNM-7408 and Research Group RNM-178 (Junta de AndalucĂ­a). The authors benefited from a bilateral agreement between the universities of Granada and Oslo, supported by the University of Granada

    Surface-Associated Plasminogen Binding of Cryptococcus neoformans Promotes Extracellular Matrix Invasion

    Get PDF
    BACKGROUND:The fungal pathogen Cryptococcus neoformans is a leading cause of illness and death in persons with predisposing factors, including: malignancies, solid organ transplants, and corticosteroid use. C. neoformans is ubiquitous in the environment and enters into the lungs via inhalation, where it can disseminate through the bloodstream and penetrate the central nervous system (CNS), resulting in a difficult to treat and often-fatal infection of the brain, called meningoencephalitis. Plasminogen is a highly abundant protein found in the plasma component of blood and is necessary for the degradation of fibrin, collagen, and other structural components of tissues. This fibrinolytic system is utilized by cancer cells during metastasis and several pathogenic species of bacteria have been found to manipulate the host plasminogen system to facilitate invasion of tissues during infection by modifying the activation of this process through the binding of plasminogen at their surface. METHODOLOGY:The invasion of the brain and the central nervous system by penetration of the protective blood-brain barrier is a prerequisite to the establishment of meningoencephalitis by the opportunistic fungal pathogen C. neoformans. In this study, we examined the ability of C. neoformans to subvert the host plasminogen system to facilitate tissue barrier invasion. Through a combination of biochemical, cell biology, and proteomic approaches, we have shown that C. neoformans utilizes the host plasminogen system to cross tissue barriers, providing support for the hypothesis that plasminogen-binding may contribute to the invasion of the blood-brain barrier by penetration of the brain endothelial cells and underlying matrix. In addition, we have identified the cell wall-associated proteins that serve as plasminogen receptors and characterized both the plasminogen-binding and plasmin-activation potential for this significant human pathogen. CONCLUSIONS:The results of this study provide evidence for the cooperative role of multiple virulence determinants in C. neoformans pathogenesis and suggest new avenues for the development of anti-infective agents in the prevention of fungal tissue invasion

    Contourite depositional system after the exit of a strait: Case study from the late Miocene South Rifian Corridor, Morocco

    Get PDF
    Idealized facies of bottom current deposits (contourites) have been established for fine-grained contourite drifts in modern deep-marine sedimentary environments. Their equivalent facies in the ancient record however are only scarcely recognized due to the weathered nature of most fine-grained deposits in outcrop. Facies related to the erosional elements (i.e. contourite channels) of contourite depositional systems have not yet been properly established and related deposits in outcrop appear non-existent. To better understand the sedimentary facies and facies sequences of contourites, the upper Miocene contourite depositional systems of the South Rifian Corridor (Morocco) is investigated. This contourite depositional system formed by the dense palaeo-Mediterranean Outflow Water. Foraminifera assemblages were used for age-constraints (7.51 to 7.35 Ma) and to determine the continental slope depositional domains. Nine sedimentary facies have been recognized based on lithology, grain-size, sedimentary structures and biogenic structures. These facies were subsequently grouped into five facies associations related to the main interpreted depositional processes (hemipelagic settling, contour currents and gravity flows). The vertical sedimentary facies succession records the tectonically induced, southward migration of the contourite depositional systems and the intermittent behaviour of the palaeo-Mediterranean Outflow Water, which is mainly driven by precession and millennial-scale climate variations. Tides substantially modulated the palaeo-Mediterranean Outflow Water on a sub-annual scale. This work shows exceptional examples of muddy and sandy contourite deposits in outcrop by which a facies distribution model from the proximal continental slope, the contourite channel to its adjacent contourite drift, is proposed. This model serves as a reference for contourite recognition both in modern environments and the ancient record. Furthermore, by establishing the hydrodynamics of overflow behaviour a framework is provided that improves process-based interpretation of deep-water bottom current deposits

    A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates

    Get PDF
    There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in “higher” primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire

    Impairment of the ER/mitochondria compartment in human cardiomyocytes with PLN p.Arg14del mutation

    Get PDF
    The phospholamban (PLN) p.Arg14del mutation causes dilated cardiomyopathy, with the molecular disease mechanisms incompletely understood. Patient dermal fibroblasts were reprogrammed to hiPSC, isogenic controls were established by CRISPR/Cas9, and cardiomyocytes were differentiated. Mutant cardiomyocytes revealed significantly prolonged Ca(2+) transient decay time, Ca(2+)‐load dependent irregular beating pattern, and lower force. Proteomic analysis revealed less endoplasmic reticulum (ER) and ribosomal and mitochondrial proteins. Electron microscopy showed dilation of the ER and large lipid droplets in close association with mitochondria. Follow‐up experiments confirmed impairment of the ER/mitochondria compartment. PLN p.Arg14del end‐stage heart failure samples revealed perinuclear aggregates positive for ER marker proteins and oxidative stress in comparison with ischemic heart failure and non‐failing donor heart samples. Transduction of PLN p.Arg14del EHTs with the Ca(2+)‐binding proteins GCaMP6f or parvalbumin improved the disease phenotype. This study identified impairment of the ER/mitochondria compartment without SR dysfunction as a novel disease mechanism underlying PLN p.Arg14del cardiomyopathy. The pathology was improved by Ca(2+)‐scavenging, suggesting impaired local Ca(2+) cycling as an important disease culprit
    • …
    corecore