652 research outputs found

    Effects of Chair Vibration on Indoor Annoyance Ratings of Sonic Booms

    Get PDF
    The effects of perceptible whole-body vibrations on annoyance ratings of sonic booms and other impulsive environmental sounds experienced indoors were studied. Fifteen pairs of test subjects made annoyance ratings while seated in a living room environment. There were two chairs, one isolated from floor vibrations and the other not isolated, and every test subject rated all signals in both chairs. Halfway through each test session, subjects changed seats. Subjects who sat in the isolated chair first gave lower mean annoyance ratings in both halves of the test than subjects who sat in the non-isolated chair first. Annoyance predictions from models using both sound and vibration measures were closer to average annoyance ratings than predictions from a model using sound measures alone. Reformulation of the annoyance model revealed that the presence of perceptible vibration is equivalent to increasing acoustic metric Perceived Level by 4.8 dB when calculated on exterior signals and by 5.6 dB when calculated on interior signals

    An investigation of thermodynamics, microscopic structure, depolarized Rayleigh scattering, and collision dynamics in Xe-N-2 supercritical mixtures

    Get PDF
    We would like to dedicate this work to the late Professor W. A. Steele (W.A.S.), Penn State University, USA. NATO Research-Project SA 5-2-05(CRG 950087) JARC (97) 288 is acknowledged for project funding to J.S., H.V. and W.A.S. The Greek State Scholarships Foundation (IKY) is acknowledged for an award based on performance to S. M. This work was supported by computational time granted from the Greek Research & Technology Network (GRNET) in the National HPC facility ARIS. The CPU time of the Computing Centre of the University of Athens (Greece) is gratefully acknowledged. This research utilized Queen Mary’s Mid-Plus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. J.K. acknowledges financial support from the NSF Grant No. CHE-1565872 to Millard Alexander

    Vibro-Acoustic Response of Buildings Due to Sonic Boom Exposure: June 2006 Field Test

    Get PDF
    During the month of June 2006, a series of structural response measurements were made on a house on Edwards Air Force Base (AFB) property that was excited by sonic booms of various amplitudes. Many NASA personnel other than the authors of this report from both Langley Research Center and Dryden Flight Research Center participated in the planning, coordination, execution, and data reduction for the experiment documented in this report. The purpose of this report is to document the measurements that were made, the structure on which they were made, the conditions under which they were made, the sensors and other hardware that were used, and the data that were collected

    Human Response to Low-Intensity Sonic Booms Heard Indoors and Outdoors

    Get PDF
    Test subjects seated inside and outside a house were exposed to low-intensity N-wave sonic booms during a 3-week test period in June 2006- The house was instrumented to measure the booms both inside and out. F-18 aircraft were flown to achieve a variety of boom overpressures from approximately .1 to .6 psf During four test days, seventy-seven test subjects heard the booms while seated inside and outside the house. Using the Magnitude Estimation methodology and artificial reference sounds ; the subjects rated the annoyance of the booms. Since the same subjects heard similar booms both inside and outside the house, comparative ratings of indoor and outdoor annoyance were obtained. For a given metric level, indoor subjects gave higher annoyance scores than outdoor subjects. For a given boom; annoyance scores inside were on average the same as those outside. In a post-test questionnaire, the majority of subjects rated the indoor booms as more annoying than the outdoor ones. These results are discussed in this paper

    Transition from ballistic to diffusive behavior of graphene ribbons in the presence of warping and charged impurities

    Full text link
    We study the effects of the long-range disorder potential and warping on the conductivity and mobility of graphene ribbons using the Landauer formalism and the tight-binding p-orbital Hamiltonian. We demonstrate that as the length of the structure increases the system undergoes a transition from the ballistic to the diffusive regime. This is reflected in the calculated electron density dependencies of the conductivity and the mobility. In particular, we show that the mobility of graphene ribbons varies as mu(n) n^(-lambda), with 0<lambda<0.5. The exponent lambda depends on the length of the system with lambda=0.5 corresponding to short structures in the ballistic regime, whereas the diffusive regime lambda=0 (when the mobility is independent on the electron density) is reached for sufficiently long structures. Our results can be used for the interpretation of experimental data when the value of lambda can be used to distinguish the transport regime of the system (i.e. ballistic, quasi-ballistic or diffusive). Based on our findings we discuss available experimental results

    Acoustic Source Localization in Aircraft Interiors Using Microphone Array Technologies

    Get PDF
    Using three microphone array configurations at two aircraft body stations on a Boeing 777-300ER flight test, the acoustic radiation characteristics of the sidewall and outboard floor system are investigated by experimental measurement. Analysis of the experimental data is performed using sound intensity calculations for closely spaced microphones, PATCH Inverse Boundary Element Nearfield Acoustic Holography, and Spherical Nearfield Acoustic Holography. Each method is compared assessing strengths and weaknesses, evaluating source identification capability for both broadband and narrowband sources, evaluating sources during transient and steady-state conditions, and quantifying field reconstruction continuity using multiple array positions

    On interconnecting and orchestrating components in disaggregated data centers:The dReDBox project vision

    Get PDF
    Computing systems servers-low-or high-end ones have been traditionally designed and built using a main-board and its hardware components as a 'hard' monolithic building block; this formed the base unit on which the system hardware and software stack design build upon. This hard deployment and management border on compute, memory, network and storage resources is either fixed or quite limited in expandability during design time and in practice remains so throughout machine lifetime as subsystem upgrades are seldomely employed. The impact of this rigidity has well known ramifications in terms of lower system resource utilization, costly upgrade cycles and degraded energy proportionality. In the dReDBox project we take on the challenge of breaking the server boundaries through materialization of the concept of disaggregation. The basic idea of the dReDBox architecture is to use a core of high-speed, low-latency opto-electronic fabric that will bring physically distant components more closely in terms of latency and bandwidth. We envision a powerful software-defined control plane that will match the flexibility of the system to the resource needs of the applications (or VMs) running in the system. Together the hardware, interconnect, and software architectures will enable the creation of a modular, vertically-integrated system that will form a datacenter-in-a-box

    Comparison of Different Measurement Technologies for the In-Flight Assessment of Radiated Acoustic Intensity

    Get PDF
    A series of tests was planned and conducted in the Interior Noise Test Facility at Boeing Field, on the NASA Aries 757 flight research aircraft, and in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center. These tests were designed to answer several questions concerning the use of array methods in flight. One focus of the tests was determining whether and to what extent array methods could be used to identify the effects of an acoustical treatment applied to a limited portion of an aircraft fuselage. Another focus of the tests was to verify that the arrays could be used to localize and quantify a known source purposely placed in front of the arrays. Thus the issues related to backside sources and flanking paths present in the complicated sound field were addressed during these tests. These issues were addressed through the use of reference transducers, both accelerometers mounted to the fuselage and microphones in the cabin, that were used to correlate the pressure holograms. measured by the microphone arrays using either SVD methods or partial coherence methods. This correlation analysis accepts only energy that is coherent with the sources sensed by the reference transducers, allowing a noise control engineer to only identify and study those vibratory sources of interest. The remainder of this paper will present a detailed description of the test setups that were used in this test sequence and typical results of the NAH/IBEM analysis used to reconstruct the sound fields. Also, a comparison of data obtained in the laboratory environments and during flights of the 757 aircraft will be made

    Comparison of tumour-based (Petersen Index) and inflammation-based (Glasgow Prognostic Score) scoring systems in patients undergoing curative resection for colon cancer

    Get PDF
    After resection, it is important to identify colon cancer patients, who are at a high risk of recurrence and who may benefit from adjuvant treatment. The Petersen Index (PI), a prognostic model based on pathological criteria is validated in Dukes' B and C disease. Similarly, the modified Glasgow Prognostic Score (mGPS) based on biochemical criteria has also been validated. This study compares both the scores in patients undergoing curative resection of colon cancer. A total of 244 patients underwent elective resection between 1997 and 2005. The PI was constructed from pathological reports; the mGPS was measured pre-operatively. The median follow-up was 67 months (minimum 36 months) during which 109 patients died; 68 of them from cancer. On multivariate analysis of age, Dukes' stage, PI and mGPS, age (hazard ratio, HR, 1.74, P=0.001), Dukes' stage (HR, 3.63, P&#60;0.001), PI (HR, 2.05, P=0.010) and mGPS (HR, 2.34, P&#60;0.001) were associated independently with cancer-specific survival. Three-year cancer-specific survival rates for Dukes' B patients with the low-risk PI were 98, 92 and 82% for the mGPS of 0, 1 and 2, respectively (P&#60;0.05). The high-risk PI population is small, in particular for Dukes' B disease (9%). The mGPS further stratifies those patients classified as low risk by the PI. Combining both the scoring systems could identify patients who have undergone curative surgery but are at high-risk of cancer-related death, therefore guiding management and trial stratification
    • …
    corecore