21 research outputs found

    Finite volume analysis of temperature effects induced by active MRI implants with cylindrical symmetry: 1. Properly working devices

    Get PDF
    BACKGROUND: Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. METHODS: This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. RESULTS: The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality factor above ten. Using MR sequences, for which the MRI system manufacturer declares the highest specific absorption rate of 4 W/kg, vascular implants with a realistic construction, size and quality factor do not show temperature increases over a critical value of 5 K. CONCLUSION: The results show dangerous heating for the assumed "worst-case scenario" only for constructions not acceptable for vascular implants. Realistic devices are safe with respect to temperature increases. However, this investigation discusses only properly working devices. Ruptures or partial ruptures of the wires carrying the electric current of the resonance circuits or other defects can set up a power source inside an extremely small volume. The temperature maps around such possible "hot spots" should be analyzed in an additional investigation

    Wie wichtig ist die Verlaufssonographie beim Polytrauma nach primärer Multislice- CT?

    No full text

    Prenatal diagnosis of partial agenesis of the corpus callosum in a fetus with thanatophoric dysplasia type 2

    No full text
    A fetus with thanatophoric dysplasia type 2 (TD2) associated with cloverleaf skull and abnormal development of the corpus callosum is reported. This case represents the first prenatal direct visualization of a partial agenesis of the corpus callosum (ACC) using high-resolution ultrasonography and colour power Doppler, which was confirmed by post-mortem magnetic resonance imaging (MRI). The causal link between cloverleaf skull in TD and partial ACC is discussed

    Superficial siderosis of the central nervous system: response to steroid therapy

    No full text

    New insights into peripartum cardiomyopathy using cardiac magnetic resonance imaging

    No full text
    PURPOSE: The aim of this study was to evaluate a comprehensive cardiac magnetic resonance (MR) imaging approach in patients with peripartum cardiomyopathy (PPCM). The focus was on inflammatory myocardial changes. MATERIALS AND METHODS: Retrospective analysis of 12 cardiac MR examinations was performed in 6 patients with PPCM. The protocol comprised cine sequences for the determination of chamber sizes and function. T 2-weighted sequences for determination of edema (T 2 ratio), T 1-weighted images for measurement of early gadolinium enhancement ratio (EGER), and late gadolinium enhancement (LGE) sequences were used for tissue characterization. 5 examinations were performed during the acute stage, and 7 examinations were performed during the course of the disease. RESULTS: Initially, 3 of 5 patients presented with an elevated left ventricular end-diastolic volume (LVEDV); in one patient, the LVEDV was in the upper range. In 4 of 5 subjects, the left ventricular ejection fraction (LVEF) was decreased. The T 2 ratio and EGER values were initially elevated in all women. No LGE was detected in initial scans. In follow-up examinations, the LVEDV decreased and the LVEF increased in all patients. Tissue-characterizing parameters decreased to normal in all but 1 patient. 2 patients showing LGE did not present a favorable clinical course. CONCLUSION: Myocardial inflammation was detected in the acute stage of PPCM, which was mostly transient. In our small group, patients showing LGE had a non-favorable clinical course. Future studies should include tissue-characterizing parameters, such as T 2 ratio and EGER. Thus, further insights into pathophysiology can be gained and therapeutic effects can be measured in a more extensive manner

    Assessment of late gadolinium enhancement in nonischemic cardiomyopathy: comparison of a fast Phase-Sensitive Inversion Recovery Sequence (PSIR) and a conventional segmented 2D gradient echo recall (GRE) sequence-preliminary findings

    No full text
    BACKGROUND: Reliable detection of myocardial scarring in nonischemic cardiomyopathy is time-consuming using techniques that require determination of optimal inversion time. Therefore we evaluated an inversion-time-insensitive approach using a fast phase-sensitive inversion recovery (PSIR) sequence to detect and quantify late gadolinium enhancement (LGE). PATIENTS AND METHODS: Twenty patients (mean age 40 years, 9 females) with nonischemic cardiomyopathy and evidence of LGE were evaluated. After administration of 0.2 mmol/kg gadolinium diethylene triamine pentaacetic acid, a segmented 2D inversion recovery turbo fast low-angle shot gradient echo recall (GRE) sequence [echo time (TE) 4.3 milliseconds, repetition time (TR) 750 milliseconds, alpha 30 degrees, voxel size 1.7 x 1.3 x 8-10 mm] was obtained and served as the standard of reference. Second, a fast multislice single-shot 2D PSIR sequence (TE 1.1 millisecond, TR 700 milliseconds, alpha 40 degrees , voxel size 2.5 x 1.7 x 8-10 mm) was acquired in the same slice positions. The PSIR(IR) images were used to analyze LGE. Altogether 53 short-axis slices with LGE were evaluated. Contrast-to-noise ratio and area of LGE were calculated and compared by 2 experienced readers. Image quality and confidence level for identification of LGE were rated on 5-point scales. Interobserver variability was evaluated in 10 patients. RESULTS: All images were interpretable. Imaging time was reduced from 385 +/- 127 seconds to 20 +/- 3 seconds (P < 0.001). Contrast-to-noise ratio was 8.29 for PSIRmag and 12.07 for the conventional GRE images (P < 0.001). The mean area of LGE was 1.01 +/- 0.62 cm(2) for the GRE sequence and 1.10 +/- 0.62 cm(2) for PSIR(IR) (P = NS). The general linear model showed no interaction between the results and no significant difference of the mean (r = 0.09, mean difference 0.09 cm(2)). The overall interobserver variability of PSIR(IR) and GRE was excellent, with Pearson's correlation coefficients of r = 0.96 for PSIR(IR) and r = 0.98 for GRE. PSIR(IR) and conventional GRE were comparable in terms of image quality and confidence level (image quality: 1.6 +/- 0.67 vs. 1.5 +/- 0.93, P = NS; confidence level: 1.4 +/- 0.84 vs. 1.3 +/- 0.5; P = NS). CONCLUSIONS: Fast PSIR sequences enable accurate detection and quantification of LGE in nonischemic cardiomyopathies. The examination time can be significantly shortened using the single-shot approach of the PSIR technique
    corecore