272 research outputs found
An allosteric regulator of R7-RGS proteins influences light-evoked activity and glutamatergic waves in the inner retina
In the outer retina, G protein-coupled receptor (GPCR) signaling mediates phototransduction and synaptic transmission between photoreceptors and ON bipolar cells. In contrast, the functions of modulatory GPCR signaling networks in the inner retina are less well understood. We addressed this question by determining the consequences of augmenting modulatory Gi/o signaling driven by endogenous transmitters. This was done by analyzing the effects of genetically ablating the R7 RGS-binding protein (R7BP), a membrane-targeting protein and positive allosteric modulator of R7-RGS (regulator of the G protein signaling 7) family that deactivates Gi/oα subunits. We found that R7BP is expressed highly in starburst amacrine cells and retinal ganglion cells (RGCs). As indicated by electroretinography and multielectrode array recordings of adult retina, ablation of R7BP preserved outer retina function, but altered the firing rate and latency of ON RGCs driven by rods and cones but not rods alone. In developing retina, R7BP ablation increased the burst duration of glutamatergic waves whereas cholinergic waves were unaffected. This effect on glutamatergic waves did not result in impaired segregation of RGC projections to eye-specific domains of the dorsal lateral geniculate nucleus. R7BP knockout mice exhibited normal spatial contrast sensitivity and visual acuity as assessed by optomotor reflexes. Taken together these findings indicate that R7BP-dependent regulation of R7-RGS proteins shapes specific aspects of light-evoked and spontaneous activity of RGCs in mature and developing retina
Genetic Control of Circuit Function: Vsx1 and Irx5 Transcription Factors Regulate Contrast Adaptation in the Mouse Retina
Transcriptional programs guide the specification of neural cell types in the developing nervous system. However, it is unclear whether such programs also control specific aspects of neural circuit function at maturity. In the mammalian retina, Vsx1 and Irx5 transcription factors are present in a subset of bipolar interneurons that convey signals from photoreceptors to ganglion cells. The biased expression of Vsx1 and Irx5 in hyperpolarizing OFF compared with depolarizing ON bipolar cells suggests that these transcription factors may selectively regulate signal processing in OFF circuits. To test this hypothesis, we generated mice lacking both Vsx1 and Irx5. Bipolar cells in these mice were morphologically normal, but the expression of cell-specific markers in some OFF but not ON bipolar cells was reduced or absent. To assess visual function in Vsx1/Irx5/ retinas, we recorded light responses from ensembles of retinal ganglion cells (RGCs). We first identified functional RGC types in control mice and describe their response properties and adaptation to temporal contrast using a simple linearnonlinear model. We found that spacetime receptive fields of RGCs are unchanged in Vsx1/Irx5/ mice compared with control retinas. In contrast, response threshold, gain, and range were lowered in a cell-type-specific manner in OFF but not ON RGCs in Vsx1/Irx5/ retinas. Finally, we discovered that the ability to adapt to temporal contrast is greatly reduced in OFF RGCs in the double mutant, suggesting that Vsx1 and Irx5 control specific aspects of visual function in circuits of the mammalian retina
Review: ‘Gimme five’: future challenges in multiple sclerosis. ECTRIMS Lecture 2009
This article is based on the ECTRIMS lecture given at the 25th ECTRIMS meeting which was held in Düsseldorf, Germany, from 9 to 12 September 2009. Five challenges have been identified: (1) safeguarding the principles of medical ethics; (2) optimizing the risk/benefit ratio; (3) bridging the gap between multiple sclerosis and experimental autoimmune encephalitis; (4) promoting neuroprotection and repair; and (5) tailoring multiple sclerosis therapy to the individual patient. Each of these challenges will be discussed and placed in the context of current research into the pathogenesis and treatment of multiple sclerosis
Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels.
A-type voltage-gated K(+) (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na(+) channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously elucidates contrasting inactivation pathways in neuronal A-type Kv channels and demonstrates how distinct pathways might impact neurophysiological activity
European skills framework? - but what are skills? Anglo-Saxon versus German concepts
With the proposed introduction of a common framework for comparing qualifications within the European Union (EU), as a result of the Lisbon agreement of 2000, the question of commonly agreed transnational concepts of skills and qualifications is has become a pressing political and practical issue. The paper argues that there are grounds for doubting that there is a ready translation of the English terms 'skill'and 'qualification' in a way that avoids problems of comparing and calibrating German and English vocational qualifications. Reasons for this difficulty are explored, the most important of which relate to: a) the conceptual structure of skill and its cognates in the two languages; b) the differing socio-political role of qualifications; c) different industrial structures and labour processes; d) differences in institutions regulating vocational education and training (VET). These problems are discussed in relation to examples of similar industries and occupations and apparently similar levels of qualification in England and Germany
Non-Centered Spike-Triggered Covariance Analysis Reveals Neurotrophin-3 as a Developmental Regulator of Receptive Field Properties of ON-OFF Retinal Ganglion Cells
The functional separation of ON and OFF pathways, one of the fundamental features of the visual system, starts in the retina. During postnatal development, some retinal ganglion cells (RGCs) whose dendrites arborize in both ON and OFF sublaminae of the inner plexiform layer transform into RGCs with dendrites that monostratify in either the ON or OFF sublamina, acquiring final dendritic morphology in a subtype-dependent manner. Little is known about how the receptive field (RF) properties of ON, OFF, and ON-OFF RGCs mature during this time because of the lack of a reliable and efficient method to classify RGCs into these subtypes. To address this deficiency, we developed an innovative variant of Spike Triggered Covariance (STC) analysis, which we term Spike Triggered Covariance – Non-Centered (STC-NC) analysis. Using a multi-electrode array (MEA), we recorded the responses of a large population of mouse RGCs to a Gaussian white noise stimulus. As expected, the Spike-Triggered Average (STA) fails to identify responses driven by symmetric static nonlinearities such as those that underlie ON-OFF center RGC behavior. The STC-NC technique, in contrast, provides an efficient means to identify ON-OFF responses and quantify their RF center sizes accurately. Using this new tool, we find that RGCs gradually develop sensitivity to focal stimulation after eye opening, that the percentage of ON-OFF center cells decreases with age, and that RF centers of ON and ON-OFF cells become smaller. Importantly, we demonstrate for the first time that neurotrophin-3 (NT-3) regulates the development of physiological properties of ON-OFF center RGCs. Overexpression of NT-3 leads to the precocious maturation of RGC responsiveness and accelerates the developmental decrease of RF center size in ON-OFF cells. In summary, our study introduces STC-NC analysis which successfully identifies subtype RGCs and demonstrates how RF development relates to a neurotrophic driver in the retina
Adaptive Movement Compensation for In Vivo Imaging of Fast Cellular Dynamics within a Moving Tissue
In vivo non-linear optical microscopy has been essential to advance our knowledge of how intact biological systems work. It has been particularly enabling to decipher fast spatiotemporal cellular dynamics in neural networks. The power of the technique stems from its optical sectioning capability that in turn also limits its application to essentially immobile tissue. Only tissue not affected by movement or in which movement can be physically constrained can be imaged fast enough to conduct functional studies at high temporal resolution. Here, we show dynamic two-photon Ca2+ imaging in the spinal cord of a living rat at millisecond time scale, free of motion artifacts using an optical stabilization system. We describe a fast, non-contact adaptive movement compensation approach, applicable to rough and weakly reflective surfaces, allowing real-time functional imaging from intrinsically moving tissue in live animals. The strategy involves enslaving the position of the microscope objective to that of the tissue surface in real-time through optical monitoring and a closed feedback loop. The performance of the system allows for efficient image locking even in conditions of random or irregular movements
S100B Protein, Brain-Derived Neurotrophic Factor, and Glial Cell Line-Derived Neurotrophic Factor in Human Milk
Human milk contains a wide variety of nutrients that contribute to the fulfillment of its functions, which include the regulation of newborn development. However, few studies have investigated the concentrations of S100B protein, brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) in human milk. The associations of the concentrations of S100B protein, BDNF, and GDNF with maternal factors are not well explored.To investigate the concentrations of S100B protein, BDNF, and GDNF in human milk and characterize the maternal factors associated with their levels in human milk, human milk samples were collected at days 3, 10, 30, and 90 after parturition. Levels of S100B protein, BDNF, and GDNF, and their mRNAs in the samples were detected. Then, these concentrations were compared with lactation and other maternal factors. S100B protein levels in human milk samples collected at 3, 10, 30, and 90 d after parturition were 1249.79±398.10, 1345.05±539.16, 1481.83±573.30, and 1414.39±621.31 ng/L, respectively. On the other hand, the BDNF concentrations in human milk samples were 10.99±4.55, 13.01±5.88, 13.35±6.43, and 2.83±5.47 µg/L, while those of GDNF were 10.90±1.65, 11.38±1., 11.29±3.10, and 11.40±2.21 g/L for the same time periods. Maternal post-pregnancy body mass index was positively associated with S100B levels in human milk (r = 0.335, P = 0.030<0.05). In addition, there was a significant correlation between the levels of S100B protein and BDNF (z = 2.09, P = 0.037<0.05). Delivery modes were negatively associated with the concentration of GDNF in human milk.S100B protein, BDNF, and GDNF are present in all samples of human milk, and they may be responsible for the long term effects of breast feeding
- …