815 research outputs found
Static Torsion Testing and Modeling of a Variable Thickness Hybrid Composite Bull Gear
Torsional strength of a variable thickness hybrid gear web was measured by performing static testing on the part in a large torsion test frame. The outer rim of the hybrid gear web was fixed to the bottom of the test frame and loading was applied to the web through a shaft. The test setup included the installation of digital image correlation (DIC) systems to obtain deformation and strain measurements from the surfaces of the hybrid gear web and the mechanical test equipment to ensure reliability of the test. The results indicated that the variable thickness hybrid gear web achieved approximately twice the torsional strength compared to that of previous hybrid gear designs. The DIC analysis showed significantly more straining of the loading shaft than the actual test article. Additionally, the results demonstrated the importance and affect that the metallic, lobed interlock features had on the principal strain and out-of-plane displacement fields. The analysis revealed that the fixed outer rim was in fact rotating and a rigid body motion compensation (RBMC) function was computed to determine the actual rotation of the hub and composite web relative to the outer rim. Modeling simulations were performed for the variable thickness hybrid gear web and correlated well with the RBMC rotational deformation seen in the DIC analysis. In addition to benchmarking the load capacity of the hybrid gear web, measuring its strength is useful information to define the parameters needed for dynamic, endurance, and other testing of the part
Evaluation of a Variable Thickness Hybrid Composite Bull Gear
For several years, NASA Glenn Research Center and the U.S. Army Research Laboratory have been investigating hybrid (composite/steel) gear technology for use in vertical lift drive systems. The hybrid gear concept replaces the structural portion of a gear between the shaft and the gear rim with a lightweight carbon fiber composite, in an effort to reduce the overall weight of a gear and increase the drive system power density. Past research includes both small-scale and large-scale hybrid gear concepts, all of which have a constant composite thickness throughout. The design described in this paper is of a variable thickness, such that the composite is thickest at the inner diameter and this thickness is gradually reduced toward the outer diameter. The resulting "stair stepped" design stems from dropping plies of the braided carbon fiber prepreg composite fabric gradually with increased radius. Additionally, the interlock pattern at the inner metallic adapter was adjusted slightly from previous designs to obtain a better stress distribution on the inner metallic adapter. The manufactured variable thickness web was tested both in static torsion tests and operationally in a relevant gearbox environment. The results of these experiments will be presented and compared to a baseline steel configuration
A framework for the simulation of structural software evolution
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 ACM.As functionality is added to an aging piece of software, its original design and structure will tend to erode. This can lead to high coupling, low cohesion and other undesirable effects associated with spaghetti architectures. The underlying forces that cause such degradation have been the subject of much research. However, progress in this field is slow, as its complexity makes it difficult to isolate the causal flows leading to these effects. This is further complicated by the difficulty of generating enough empirical data, in sufficient quantity, and attributing such data to specific points in the causal chain. This article describes a framework for simulating the structural evolution of software. A complete simulation model is built by incrementally adding modules to the framework, each of which contributes an individual evolutionary effect. These effects are then combined to form a multifaceted simulation that evolves a fictitious code base in a manner approximating real-world behavior. We describe the underlying principles and structures of our framework from a theoretical and user perspective; a validation of a simple set of evolutionary parameters is then provided and three empirical software studies generated from open-source software (OSS) are used to support claims and generated results. The research illustrates how simulation can be used to investigate a complex and under-researched area of the development cycle. It also shows the value of incorporating certain human traits into a simulation—factors that, in real-world system development, can significantly influence evolutionary structures
Unlocking legal validity. Some remarks on the artificial ontology of law
Following Kelsen’s influential theory of law, the concept of validity has been used in the literature to refer to different properties of law (such as existence, membership, bindingness, and more) and so it is inherently ambiguous. More importantly, Kelsen’s equivalence between the existence and the validity of law prevents us from accounting satisfactorily for relevant aspects of our current legal practices, such as the phenomenon of ‘unlawful law’. This chapter addresses this ambiguity to argue that the most important function of the concept of validity is constituting the complex ontological paradigm of modern law as an institutional-normative practice. In this sense validity is an artificial ontological status that supervenes on that of existence of legal norms, thus allowing law to regulate its own creation and creating the logical space for the occurrence of ‘unlawful law’. This function, I argue in the last part, is crucial to understanding the relationship between the ontological and epistemic dimensions of the objectivity of law. For given the necessary practice-independence of legal norms, it is the epistemic accessibility of their creation that enables the law to fulfill its general action-guiding (and thus coordinating) function
Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools
BACKGROUND: We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. This study aimed: (1) to investigate differences in hippocampal NPC proliferation in outbred male spontaneously hypertensive rats (SHRs) and Sprague-Dawley rats (SDs) one week after tMCAo; (2) to present the practical use of the optical fractionator and 2D nucleator in stereological brain tissue analyses; and (3) to report our experiences with an intraluminal tMCAo model where the occluding filament is advanced 22 mm beyond the carotid bifurcation and the common carotid artery is clamped during tMCAo. METHODS: Twenty-three SDs and twenty SHRs were randomized into four groups subjected to 90 minutes tMCAo or sham. BrdU (50 mg/kg) was administered intraperitoneally twice daily on Day 4 to 7 after surgery. On Day 8 all animals were euthanized. NeuN-stained tissue sections were used for brain and infarct volume estimation with the 2D nucleator and Cavalieri principle. Brains were studied for the presence of activated microglia (ED-1) and hippocampal BrdU incorporation using the optical fractionator. RESULTS: We found no significant difference or increase in post-ischemic NPC proliferation between the two strains. However, the response to remote ischemia may differ between SDs and SHRs. In three animals increased post-stroke NPC proliferation was associated with hippocampal ischemic injury. The mean infarct volume was 89.2 ± 76.1 mm(3 )in SHRs and 16.9 ± 22.7 mm(3 )in SDs (p < 0.005). Eight out of eleven SHRs had ischemic neocortical damage in contrast to only one out of 12 SDs. We observed involvement of the anterior choroidal and hypothalamic arteries in several animals from both strains and the anterior cerebral artery in two SHRs. CONCLUSIONS: We found no evidence of an early hippocampal NPC proliferation one week after tMCAo in both strains. Infarction within the anterior choroidal artery could induce hippocampal ischemia and increase NPC proliferation profoundly. NPC proliferation was not aggravated by the presence of activated microglia. Intraluminal tMCAo in SHRs gave a more reliable infarct with neocortical involvement, but affected territories supplied by the anterior cerebral, anterior choroidal and hypothalamic arteries
Evaluation of a Variable Thickness Hybrid Composite Bull Gear
For several years, NASA Glenn Research Center and the U.S. Army Research Laboratory have been investigating hybrid (compositesteel) gear technology for use in vertical lift drive systems. The hybrid gear concept replaces the structural portion of a gear between the shaft and the gear rim with a lightweight carbon fiber composite, in an effort to reduce the overall weight of a gear and increase the drive system power density. An overview of the concept of the hybrid gear design is described in Ref. 1, 2, and 3. The research presented in these references includes both small-scale and large-scale hybrid gear concepts all of which have a constant composite thickness throughout. The design described in this paper is of a variable thickness, such that the composite is thickest at the inner diameter and this thickness is gradually reduced toward the outer diameter. The resulting stair stepped design stems from dropping plies of the braided carbon fiber composite fabric gradually with increased radius. Additionally, the interlock pattern at the inner metallic adapter was adjusted slightly from previous designs to obtain a better stress distribution on the inner metallic adapter. The manufactured variable thickness web was tested both in static torsion tests and operationally in a relevant gearbox environment. The results of these experiments will be presented and compared to a baseline steel configuration
Molecular identification of Coccidioides spp. in soil samples from Brazil
<p>Abstract</p> <p>Background</p> <p>Since 1991 several outbreaks of acute coccidioidomycosis (CM) were diagnosed in the semi-arid Northeast of Brazil, mainly related to disturbance of armadillo burrows caused by hunters while digging them for the capture of these animals. This activity causes dust contaminated with arthroconidia of <it>Coccidioides posadasii</it>, which, once inhaled, cause the mycosis. We report on the identification of <it>C. posadasii </it>in soil samples related to outbreaks of CM.</p> <p>Results</p> <p>Twenty four soil samples had their DNA extracted and subsequently submitted to a semi-nested PCR technique using specific primers. While only 6 (25%) soil samples were positive for <it>C. posadasii </it>by mice inoculation, all (100%) were positive by the molecular tool.</p> <p>Conclusion</p> <p>This methodology represents a simple, sensitive and specific molecular technique to determine the environmental distribution of <it>Coccidioides </it>spp. in endemic areas, but cannot distinguish the species. Moreover, it may be useful to identify culture isolates. Key-words: 1. Coccidioidomycosis. 2. <it>Coccidioides </it>spp. 3. <it>C. posadasii</it>. 4. Semi-arid. 5. Semi-nested PCR</p
Phase II study of bi-weekly administration of paclitaxel and cisplatin in patients with advanced oesophageal cancer
In a phase I study we demonstrated the feasibility of a bi-weekly combination of paclitaxel 180 mg m−2 with cisplatin 60 mg m−2. In this study we further assessed toxicity and efficacy of this schedule in the treatment of advanced cancer of the oesophagus or the gastro-oesophageal junction. Patients received paclitaxel 180 mg m−2 administered over 3 h followed by a 3-h infusion of cisplatin 60 mg m−2. Patients were retreated every 2 weeks unless granulocytes were <0.75×109 or platelets <75×109. Patients were evaluated after three and six cycles and responding patients received a maximum of eight cycles. Fifty-one patients were enrolled into the study. The median age was 56 years (range 32–78). WHO performance status were: 0 (19 patients); 1 (29 patients); 2 (three patients). All patients received at least three cycles of chemotherapy and all were evaluable for toxicity and response. Haematological toxicity consisted of uncomplicated neutropenia grade 3 in 39% and grade 4 in 31% of patients. Five patients (10%) were hospitalised, three patients because of treatment related complications and two patients because of infections without neutropenia. Sensory neurotoxicity was the predominant non-haematological toxicity; grade 1 and 2 neurotoxicity was observed in 43 and 20% of patients, respectively. Response evaluation in 51 patients with measurable disease: complete response 4%, partial response 39%, stable disease 43% and progressive disease in 14% of the patients. The median duration of response was 8 months. The median survival for all patients was 9 (range 2–29+) months and the one-year survival rate was 43%. Four patients who received additional local treatment (two patients surgery and two patients radiotherapy) are still disease free after a follow-up of 20–29 months. This bi-weekly treatment of paclitaxel and cisplatin is well tolerated by patients with advanced oesophageal cancer. The toxicity profile of this regimen compares favourable to that of previously used cisplatin- and paclitaxel-based regimens. Trials are underway evaluating this bi-weekly regimen in a neo-adjuvant setting
Hybrid Gear Performance Under Loss-of-Lubrication Conditions
Hybrid composite gear technology is being investigated to increase power density in rotorcraft drive systems. These gears differ from conventional steel gears in that the structural web material is replaced with a lightweight carbon fiber composite. Past studies have focused on performance of this technology under normal operating conditions, however, for this technology to be viable it must also withstand adverse conditions. The study presented here evaluates the performance of hybrid gears under loss-of-lubrication conditions in NASA Glenn Research Centers Contact Fatigue Test Facility. Two experiments are presented using small-scale 3.5 inch (8.9 cm) pitch diameter hybrid gears and compared to a baseline steel gear pair. Results of these tests show that there are limitations to the use of a hexagonal interlock pattern between the steel and composite. There is also evidence that the presence of polymer in the gear during an oil out event has a potential to increase time to failure. Further studies are planned to expand on these initial findings
- …