21,481 research outputs found

    Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing

    Full text link
    In the last decade, transition-metal-doped ZnO has been intensively investigated as a route to room-temperature diluted magnetic semiconductors (DMSs). However, the origin for the reported ferromagnetism in ZnO-based DMS remains questionable. Possible options are diluted magnetic semiconductors, spinodal decomposition, or secondary phases. In order to clarify this question, we have performed a thorough characterization of the structural and magnetic properties of Co- and Ni-implanted ZnO single crystals. Our measurements reveal that Co or Ni nanocrystals (NCs) are the major contribution of the measured ferromagnetism. Already in the as-implanted samples, Co or Ni NCs have formed and they exhibit superparamagnetic properties. The Co or Ni NCs are crystallographically oriented with respect to the ZnO matrix. Their magnetic properties, e.g., the anisotropy and the superparamagnetic blocking temperature, can be tuned by annealing. We discuss the magnetic anisotropy of Ni NCs embedded in ZnO concerning the strain anisotropy.Comment: 13 pages, 14 figure

    Vehicular fuel composition and atmospheric emissions in South China: Hong Kong, Macau, Guangzhou, and Zhuhai

    Get PDF
    International audienceVehicular emission is an important source of air pollutants in urban cities in the Pearl River Delta (PRD) region of South China. In order to study the impact of vehicular fuel on air quality, several commonly used fuel samples were collected in four main cities in the PRD region ? Hong Kong, Guangzhou, Macau and Zhuhai, and analyzed for their volatile organic compounds (VOCs) composition. Source profiles of the vehicular fuels used in these cities were constructed and are believed to be the first reported for the PRD region. The C8?C10 hydrocarbons were the main constituents of diesel. Different from diesel, gasoline used in the PRD region was mainly comprised of lighter C4?C7 hydrocarbons, with toluene and i-pentane being the two most abundant species. The benzene content in the Guangzhou and Zhuhai gasoline samples were higher than that in Hong Kong and Macau and exceeded the maximum benzene levels for Mainland China unleaded gasoline. Liquefied Petroleum Gas (LPG) samples were collected only in Hong Kong and were comprised mainly of n-butane, propane and i-butane. Traffic samples indicated that evaporative loss and vehicular combustion were the primary contributors to elevated VOC levels in roadside atmospheres. Significant i-pentane and toluene concentrations were observed in roadside atmospheres in all four cities. Ratio of i-pentane in gasoline samples to that in roadside samples were calculated and this showed that the degree of evaporative loss was higher in Guangzhou and Zhuhai than that in Hong Kong and Macau. We suggest the difference is due to the better maintenance and more new cars in Hong Kong and Macau. From tunnel samples collected in Hong Kong in two different years, we found that the relative amount of propane, i-butane, and n-butane increased between 2001 to 2003, consistent with the 40% increase in LPG fueled vehicles. Propane to butanes ratios were calculated for LPG and tunnels samples, and the comparable ratios illustrated the LPG leakages from LPG fueled vehicles crossing the tunnel

    Uniform and fast switching of window-size smectic A liquid crystal panels utilising the field gradient generated at the fringes of patterned electrodes

    Get PDF
    A method to enable smectic A (SmA) liquid crystal (LC) devices to switch uniformly and hence fast from the clear state to a scattered state is presented. It will allow the reduction of the switching time for a SmA LC panel of 1x1 m2 changing from a clear state to a fully scattered state by more than three orders to a few tens of milliseconds. Experimental results presented here reveal that SmA LC scattering initiates from the nucleated LC defects at the field gradient of the applied electric field usually along the edges of the panel electrode and grows laterally to spread over a panel, which takes a long time if the panel size is large. By patterning the electrodes in use, it is possible to create a large number of field gradient sites near the electrode discontinuities, resulting in a uniform and fast switching over the whole panel and the higher the pattern density the shorter the panel switching time. For the SmA LC panels used here, the ITO transparent electrodes are patterned by laser ablation and photolithography, respectively. It is shown that the defect nucleation time is much shorter than the growth time of the scattered region, hence it is possible to use the density of the field gradient sites to control the uniformity and switching time of a panel. Furthermore, the patterned SmA panels have a lower switching voltage than that of the non-patterned ones in general.The authors would like to thank the UK Engineering and Physical Sciences Research Council (EPSRC) for the support through the Platform Grant for Liquid Crystal Photonics (EP/F00897X/1) and Dr Anthony Davey for providing the organic SmA LC and Dow Corning Corp. for providing the siloxane-based SmA LC used in this study. The authors would also like to thank Dr Stuart Speakman for the helpful discussions.This is the final version of the article. It first appeared from Taylor & Francis via http://dx.doi.org/10.1080/02678292.2016.114201

    Dispersion Relations for Thermally Excited Waves in Plasma Crystals

    Full text link
    Thermally excited waves in a Plasma crystal were numerically simulated using a Box_Tree code. The code is a Barnes_Hut tree code proven effective in modeling systems composed of large numbers of particles. Interaction between individual particles was assumed to conform to a Yukawa potential. Particle charge, mass, density, Debye length and output data intervals are all adjustable parameters in the code. Employing a Fourier transform on the output data, dispersion relations for both longitudinal and transverse wave modes were determined. These were compared with the dispersion relations obtained from experiment as well as a theory based on a harmonic approximation to the potential. They were found to agree over a range of 0.9<k<5, where k is the shielding parameter, defined by the ratio between interparticle distance a and dust Debye length lD. This is an improvement over experimental data as current experiments can only verify the theory up to k = 1.5.Comment: 8 pages, Presented at COSPAR '0

    Channel Estimation for RIS-Aided MIMO Systems: A Partially Decoupled Atomic Norm Minimization Approach

    Full text link
    Channel estimation (CE) plays a key role in reconfigurable intelligent surface (RIS)-aided multiple-input multiple-output (MIMO) communication systems, while it poses a challenging task due to the passive nature of RIS and the cascaded channel structures. In this paper, a partially decoupled atomic norm minimization (PDANM) framework is proposed for CE of RIS-aided MIMO systems, which exploits the three-dimensional angular sparsity of the channel. In particular, PDANM partially decouples the differential angles at the RIS from other angles at the base station and user equipment, reducing the computational complexity compared with existing methods. A reweighted PDANM (RPDANM) algorithm is proposed to further improve CE accuracy, which iteratively refines CE through a specifically designed reweighing strategy. Building upon RPDANM, we propose an iterative approach named RPDANM with adaptive phase control (RPDANM-APC), which adaptively adjusts the RIS phases based on previously estimated channel parameters to facilitate CE, achieving superior CE accuracy while reducing training overhead. Numerical simulations demonstrate the superiority of our proposed approaches in terms of running time, CE accuracy, and training overhead. In particular, the RPDANM-APC approach can achieve higher CE accuracy than existing methods within less than 40 percent training overhead while reducing the running time by tens of times.Comment: 35 pages, 9 figures. Part of this paper has been submitted to the 2023 IEEE Global Communications Conference (GLOBECOM
    corecore