75,794 research outputs found

    Limits of sympathetic cooling of fermions: The role of the heat capacity of the coolant

    Full text link
    The sympathetic cooling of an initially degenerate Fermi gas by either an ideal Bose gas below TcT_c or an ideal Boltzmann gas is investigated. It is shown that the efficiency of cooling by a Bose gas below TcT_c is by no means reduced when its heat capacity becomes much less than that of the Fermi gas, where efficiency is measured by the decrease in the temperature of the Fermi gas per number of particles evaporated from the coolant. This contradicts the intuitive idea that an efficient coolant must have a large heat capacity. In contrast, for a Boltzmann gas a minimal value of the ratio of the heat capacities is indeed necessary to achieve T=0 and all of the particles must be evaporated.Comment: 5 pages, 3 figure

    Mapping the Beta-Sheet Structure of the Yeast Prion Sup35 through Creation of Targeted Mutant Forms

    Get PDF
    Proteins with an aggregated form rich in beta-sheet structure are known as amyloids, of which a subset are infectious. These infectious proteins are known as prions and cause diseases including bovine spongiform encephalopathy (“Mad Cow” disease). Several prions have been identified in the baker’s yeast, Saccharomyces cerevisiae. One of the most well-studied yeast prions is the protein Sup35. To understand the fine protein structure of Sup35 better, we used PCR-based mutagenesis to introduce a lysine residue (a charged amino acid) at five defined places in the protein sequence of Sup35. We describe our process for creating these mutant versions and the results of DNA sequencing of each mutant version. The next step will be to assess prion formation and stability of clones with the correct sequences. Understanding the behavior of yeast prions has proven helpful in understanding human amyloid diseases and further studies on these yeast prions, including Sup35, will expand our knowledge further

    Law of corresponding state for the transport properties of molten salts

    Get PDF
    Corresponding state theory for transport properties of ionic fused alkali salt

    A Catalog of Galaxy Clusters Observed by XMM-Newton

    Get PDF
    Aims: We present a uniform catalog of the images and radial profiles of the temperature, abundance, and brightness for 70 clusters of galaxies observed by XMM-Newton. Methods: We use a new "first principles" approach to the modeling and removal of the background components; the quiescent particle background, the cosmic diffuse emission, the soft proton contamination, and the solar wind charge exchange emission. Each of the background components demonstrate significant spectral variability, several have spatial distributions that are not described by the photon vignetting function, and all except for the cosmic diffuse emission are temporally variable. Because these backgrounds strongly affect the analysis of low surface brightness objects, we provide a detailed description our methods of identification, characterization, and removal. Results: We have applied these methods to a large collection of XMM-Newton observations of clusters of galaxies and present the resulting catalog. We find significant systematic differences between the Chandra and XMM-Newton temperatures.Comment: Accepted for publication in A&A, 55 pages with 42 figure

    Geology orbiter comparison study

    Get PDF
    Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives

    Experimental studies of collision and fragmentation phenomena

    Get PDF
    The reduction and publication of an extensive data set collected in experiments over several years at Ames and PSI is briefly examined. Hartmann has been assembling data sets from his experiments on catastrophic fragmentation of various materials, including basalt, other igneous rock, ice, and weak dirt clods. Weidenschilling and Davis have continued to gather and reduce data on oblique impacts. The data indicate a power law distribution of ejecta mass vs. velocity, with a slope that is independent of azimuth, and does not vary with impact angle from normal impacts to at least 75 deg from vertical. In order to improve models of coagulation of dust aggregates in the solar nebula, SJW developed an apparatus for drop tests of fragile projectiles. Davis and Weidenschilling continued to collect and analyze experimental data on collisional catastrophic disruption at the Ames Vertical Gun Range

    Ring baffle pressure distribution and slosh damping in large cylindrical tanks

    Get PDF
    An investigation was conducted to determine the pressure loads and damping associated with rigid ring baffles in relatively large cylindrical tanks. The radial and circumferential pressure distribution, as well as the damping, was measured on a ring baffle subjected to fundamental antisymmetric slosh in a 284-cm-diameter rigid tank. Experimental and analytical data are presented as a function of slosh velocity or amplitude, baffle spacing, and baffle locations both above and below the liquid surface. Results suggest that pressure distributions and damping values can be determined from available theories for the design of single and multiple baffle configurations
    corecore