240 research outputs found

    Quantum thermodynamics with missing reference frames: Decompositions of free energy into non-increasing components

    Full text link
    If an absolute reference frame with respect to time, position, or orientation is missing one can only implement quantum operations which are covariant with respect to the corresponding unitary symmetry group G. Extending observations of Vaccaro et al., I argue that the free energy of a quantum system with G-invariant Hamiltonian then splits up into the Holevo information of the orbit of the state under the action of G and the free energy of its orbit average. These two kinds of free energy cannot be converted into each other. The first component is subadditive and the second superadditive; in the limit of infinitely many copies only the usual free energy matters. Refined splittings of free energy into more than two independent (non-increasing) terms can be defined by averaging over probability measures on G that differ from the Haar measure. Even in the presence of a reference frame, these results provide lower bounds on the amount of free energy that is lost after applying a covariant channel. If the channel properly decreases one of these quantities, it decreases the free energy necessarily at least by the same amount, since it is unable to convert the different forms of free energies into each other.Comment: 17 pages, latex, 1 figur

    A Complexity Measure for Continuous Time Quantum Algorithms

    Get PDF
    We consider unitary dynamical evolutions on n qubits caused by time dependent pair-interaction Hamiltonians and show that the running time of a parallelized two-qubit gate network simulating the evolution is given by the time integral over the chromatic index of the interaction graph. This defines a complexity measure of continuous and discrete quantum algorithms which are in exact one-to-one correspondence. Furthermore we prove a lower bound on the growth of large-scale entanglement depending on the chromatic index.Comment: 6 pages, Revte

    Performing joint measurements and transformations on several qubits by operating on a single control qubit

    Get PDF
    An n-qubit quantum register can in principle be completely controlled by operating on a single qubit that interacts with the register via an appropriate fixed interaction. We consider a hypothetical system consisting of n spin-1/2 nuclei that interact with an electron spin via a magnetic interaction. We describe algorithms that measure non-trivial joint observables on the register by acting on the control spin only. For large n this is not an efficient model for universal quantum computation but it can be modified to an efficient one if one allows n possible positions of the control particle. This toy model of measurements illustrates in which way specific interactions between the register and a probe particle support specific types of joint measurements in the sense that some joint observables can be measured by simple sequences of operations on the probe particle.Comment: 7 pages, revtex, 3 figure

    Spin-1/2 particles moving on a 2D lattice with nearest-neighbor interactions can realize an autonomous quantum computer

    Full text link
    What is the simplest Hamiltonian which can implement quantum computation without requiring any control operations during the computation process? In a previous paper we have constructed a 10-local finite-range interaction among qubits on a 2D lattice having this property. Here we show that pair-interactions among qutrits on a 2D lattice are sufficient, too, and can also implement an ergodic computer where the result can be read out from the time average state after some post-selection with high success probability. Two of the 3 qutrit states are given by the two levels of a spin-1/2 particle located at a specific lattice site, the third state is its absence. Usual hopping terms together with an attractive force among adjacent particles induce a coupled quantum walk where the particle spins are subjected to spatially inhomogeneous interactions implementing holonomic quantum computing. The holonomic method ensures that the implemented circuit does not depend on the time needed for the walk. Even though the implementation of the required type of spin-spin interactions is currently unclear, the model shows that quite simple Hamiltonians are powerful enough to allow for universal quantum computing in a closed physical system.Comment: More detailed explanations including description of a programmable version. 44 pages, 12 figures, latex. To appear in PR

    A Quantum Broadcasting Problem in Classical Low Power Signal Processing

    Full text link
    We pose a problem called ``broadcasting Holevo-information'': given an unknown state taken from an ensemble, the task is to generate a bipartite state transfering as much Holevo-information to each copy as possible. We argue that upper bounds on the average information over both copies imply lower bounds on the quantum capacity required to send the ensemble without information loss. This is because a channel with zero quantum capacity has a unitary extension transfering at least as much information to its environment as it transfers to the output. For an ensemble being the time orbit of a pure state under a Hamiltonian evolution, we derive such a bound on the required quantum capacity in terms of properties of the input and output energy distribution. Moreover, we discuss relations between the broadcasting problem and entropy power inequalities. The broadcasting problem arises when a signal should be transmitted by a time-invariant device such that the outgoing signal has the same timing information as the incoming signal had. Based on previous results we argue that this establishes a link between quantum information theory and the theory of low power computing because the loss of timing information implies loss of free energy.Comment: 28 pages, late

    Decomposition of time-covariant operations on quantum systems with continuous and/or discrete energy spectrum

    Full text link
    Every completely positive map G that commutes which the Hamiltonian time evolution is an integral or sum over (densely defined) CP-maps G_\sigma where \sigma is the energy that is transferred to or taken from the environment. If the spectrum is non-degenerated each G_\sigma is a dephasing channel followed by an energy shift. The dephasing is given by the Hadamard product of the density operator with a (formally defined) positive operator. The Kraus operator of the energy shift is a partial isometry which defines a translation on R with respect to a non-translation-invariant measure. As an example, I calculate this decomposition explicitly for the rotation invariant gaussian channel on a single mode. I address the question under what conditions a covariant channel destroys superpositions between mutually orthogonal states on the same orbit. For channels which allow mutually orthogonal output states on the same orbit, a lower bound on the quantum capacity is derived using the Fourier transform of the CP-map-valued measure (G_\sigma).Comment: latex, 33 pages, domains of unbounded operators are now explicitly specified. Presentation more detailed. Implementing the shift after the dephasing is sometimes more convenien

    Distinguishing n Hamiltonians on C^n by a single measurement

    Get PDF
    If an experimentalist wants to decide which one of n possible Hamiltonians acting on an n dimensional Hilbert space is present, he can conjugate the time evolution by an appropriate sequence of known unitary transformations in such a way that the different Hamiltonians result in mutual orthogonal final states. We present a general scheme providing such a sequence.Comment: 4 pages, Revte

    Simulating Hamiltonians in Quantum Networks: Efficient Schemes and Complexity Bounds

    Get PDF
    We address the problem of simulating pair-interaction Hamiltonians in n node quantum networks where the subsystems have arbitrary, possibly different, dimensions. We show that any pair-interaction can be used to simulate any other by applying sequences of appropriate local control sequences. Efficient schemes for decoupling and time reversal can be constructed from orthogonal arrays. Conditions on time optimal simulation are formulated in terms of spectral majorization of matrices characterizing the coupling parameters. Moreover, we consider a specific system of n harmonic oscillators with bilinear interaction. In this case, decoupling can efficiently be achieved using the combinatorial concept of difference schemes. For this type of interactions we present optimal schemes for inversion.Comment: 19 pages, LaTeX2

    Causal Consistency of Structural Equation Models

    Get PDF
    Complex systems can be modelled at various levels of detail. Ideally, causal models of the same system should be consistent with one another in the sense that they agree in their predictions of the effects of interventions. We formalise this notion of consistency in the case of Structural Equation Models (SEMs) by introducing exact transformations between SEMs. This provides a general language to consider, for instance, the different levels of description in the following three scenarios: (a) models with large numbers of variables versus models in which the `irrelevant' or unobservable variables have been marginalised out; (b) micro-level models versus macro-level models in which the macro-variables are aggregate features of the micro-variables; (c) dynamical time series models versus models of their stationary behaviour. Our analysis stresses the importance of well specified interventions in the causal modelling process and sheds light on the interpretation of cyclic SEMs.Comment: equal contribution between Rubenstein and Weichwald; accepted manuscrip
    corecore