2,415 research outputs found

    Spin detection at elevated temperatures using a driven double quantum dot

    Get PDF
    We consider a double quantum dot in the Pauli blockade regime interacting with a nearby single spin. We show that under microwave irradiation the average electron occupations of the dots exhibit resonances that are sensitive to the state of the nearby spin. The system thus acts as a spin meter for the nearby spin. We investigate the conditions for a non-demolition read-out of the spin and find that the meter works at temperatures comparable to the dot charging energy and sensitivity is mainly limited by the intradot spin relaxation.Comment: 8 pages, 6 figure

    Global Optical Control of a Quantum Spin Chain

    Full text link
    Quantum processors which combine the long decoherence times of spin qubits together with fast optical manipulation of excitons have recently been the subject of several proposals. I show here that arbitrary single- and entangling two-qubit gates can be performed in a chain of perpetually coupled spin qubits solely by using laser pulses to excite higher lying states. It is also demonstrated that universal quantum computing is possible even if these pulses are applied {\it globally} to a chain; by employing a repeating pattern of four distinct qubit units the need for individual qubit addressing is removed. Some current experimental qubit systems would lend themselves to implementing this idea.Comment: 5 pages, 3 figure

    Preprint arXiv: 2201.05529 Submitted on 14 Jan 2022

    Get PDF
    We study the thermalization of individual spins of a short XYZ Heisenberg chain with strongly coupled thermal leads by checking the consistency of two-time correlations with the fluctuation-dissipation theorem. To compute these correlations we develop and apply a general numerical method for chains of quantum systems, where each system may couple strongly to a structured environment. The method combines the process tensor formalism for general (possibly non-Markovian) open quantum systems with time evolving block decimation for 1D chains. It systematically reduces the numerical complexity originating from system-environment correlations before integrating them into the full many-body problem, making a wide range of applications numerically feasible. Our results show the complete thermalization of the chain when coupled to a single bath, and reveal distinct effective temperatures in low, mid, and high frequency regimes when placed between a hot and a cold bath

    Superabsorption of light via quantum engineering

    Get PDF
    Almost 60 years ago Dicke introduced the term superradiance to describe a signature quantum effect: N atoms can collectively emit light at a rate proportional to N^2. Even for moderate N this represents a significant increase over the prediction of classical physics, and the effect has found applications ranging from probing exciton delocalisation in biological systems, to developing a new class of laser, and even in astrophysics. Structures that super-radiate must also have enhanced absorption, but the former always dominates in natural systems. Here we show that modern quantum control techniques can overcome this restriction. Our theory establishes that superabsorption can be achieved and sustained in certain simple nanostructures, by trapping the system in a highly excited state while extracting energy into a non-radiative channel. The effect offers the prospect of a new class of quantum nanotechnology, capable of absorbing light many times faster than is currently possible; potential applications of this effect include light harvesting and photon detection. An array of quantum dots or a porphyrin ring could provide an implementation to demonstrate this effect

    Solving the brachistochrone and other variational problems with soap films

    Full text link
    We show a method to solve the problem of the brachistochrone as well as other variational problems with the help of the soap films that are formed between two suitable surfaces. We also show the interesting connection between some variational problems of dynamics, statics, optics, and elasticity.Comment: 16 pages, 11 figures. This article, except for a small correction, has been submitted to the American Journal of Physic

    Polarization--universal rejection filtering by ambichiral structures made of indefinite dielectric--magnetic materials

    Full text link
    An ambichiral structure comprising sheets of an anisotropic dielectric material rejects normally incident plane waves of one circular polarization (CP) state but not of the other CP state, in its fundamental Bragg regime. However, if the same structure is made of an dielectric--magnetic material with indefinite permittivity and permeability dyadics, it may function as a polarization--universal rejection filter because two of the four planewave components of the electromagnetic field phasors in each sheet are of the positive--phase--velocity type and two are of the negative--phase--velocity type.Comment: Cleaned citations in the tex

    Why Pad\'e Approximants reduce the Renormalization-Scale dependence in QFT?

    Full text link
    We prove that in the limit where the beta function is dominated by the 1-loop contribution (``large beta_0 limit'') diagonal Pad\'e Approximants (PA's) of perturbative series become exactly renormalization scale (RS) independent. This symmetry suggest that diagonal PA's are resumming correctly contributions from higher order diagrams that are responsible for the renormalization of the coupling-constant. Non-diagonal PA's are not exactly invariant, but generally reduce the RS dependence as compared to partial-sums. In physical cases, higher-order corrections in the beta function break the symmetry softly, introducing a small scale and scheme dependence. We also compare the Pad\'e resummation with the BLM method. We find that in the large-N_f limit using the BLM scale is identical to resumming the series by a x[0/n]x[0/n] non-diagonal PA.Comment: 25 pages, LateX. Replaced so that the figures would fit into the page siz

    The Structure of the Vortex Liquid at the Surface of a Layered Superconductor

    Full text link
    A density-functional approach is used to calculate the inhomogeneous vortex density distribution in the flux liquid phase at the planar surface of a layered superconductor, where the external magnetic field is perpendicular to the superconducting layers and parallel to the surface. The interactions with image vortices are treated within a mean field approximation as a functional of the vortex density. Near the freezing transition strong vortex density fluctuations are found to persist far into the bulk liquid. We also calculate the height of the Bean-Livingston surface barrier.Comment: 8 pages, RevTeX, 2 figure

    Coherent state transfer between an electron- and nuclear spin in 15N@C60

    Get PDF
    Electron spin qubits in molecular systems offer high reproducibility and the ability to self assemble into larger architectures. However, interactions between neighbouring qubits are 'always-on' and although the electron spin coherence times can be several hundred microseconds, these are still much shorter than typical times for nuclear spins. Here we implement an electron-nuclear hybrid scheme which uses coherent transfer between electron and nuclear spin degrees of freedom in order to both controllably turn on/off dipolar interactions between neighbouring spins and benefit from the long nuclear spin decoherence times (T2n). We transfer qubit states between the electron and 15N nuclear spin in 15N@C60 with a two-way process fidelity of 88%, using a series of tuned microwave and radiofrequency pulses and measure a nuclear spin coherence lifetime of over 100 ms.Comment: 5 pages, 3 figures with supplementary material (8 pages
    • …
    corecore