23,604 research outputs found

    Novelty Search in Competitive Coevolution

    Get PDF
    One of the main motivations for the use of competitive coevolution systems is their ability to capitalise on arms races between competing species to evolve increasingly sophisticated solutions. Such arms races can, however, be hard to sustain, and it has been shown that the competing species often converge prematurely to certain classes of behaviours. In this paper, we investigate if and how novelty search, an evolutionary technique driven by behavioural novelty, can overcome convergence in coevolution. We propose three methods for applying novelty search to coevolutionary systems with two species: (i) score both populations according to behavioural novelty; (ii) score one population according to novelty, and the other according to fitness; and (iii) score both populations with a combination of novelty and fitness. We evaluate the methods in a predator-prey pursuit task. Our results show that novelty-based approaches can evolve a significantly more diverse set of solutions, when compared to traditional fitness-based coevolution.Comment: To appear in 13th International Conference on Parallel Problem Solving from Nature (PPSN 2014

    The complex Sine-Gordon equation as a symmetry flow of the AKNS Hierarchy

    Full text link
    It is shown how the complex sine-Gordon equation arises as a symmetry flow of the AKNS hierarchy. The AKNS hierarchy is extended by the ``negative'' symmetry flows forming the Borel loop algebra. The complex sine-Gordon and the vector Nonlinear Schrodinger equations appear as lowest negative and second positive flows within the extended hierarchy. This is fully analogous to the well-known connection between the sine-Gordon and mKdV equations within the extended mKdV hierarchy. A general formalism for a Toda-like symmetry occupying the ``negative'' sector of sl(N) constrained KP hierarchy and giving rise to the negative Borel sl(N) loop algebra is indicated.Comment: 8 pages, LaTeX, typos corrected, references update

    Complete Fusion Enhancement and Suppression of Weakly Bound Nuclei at Near Barrier Energies

    Full text link
    We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross section for 6,7^{6,7}Li + 209^{209}Bi are analyzed in the framework of the DPP approach.Comment: 12 pages, 2 figure

    Endogenous Cycles in Optimal Monetary Policy with a Nonlinear Phillips Curve

    Get PDF
    There is by now a large consensus in modern monetary policy. This consensus has been built upon a dynamic general equilibrium model of optimal monetary policy with sticky prices a la Calvo and forward looking behavior. In this paper we extend this standard model by introducing nonlinearity into the Phillips curve. As the linear Phillips curve may be questioned on theoretical grounds and seems not to be favoured by empirical evidence, a similar procedure has already been undertaken in a series papers over the last few years, e.g., Schaling (1999), Semmler and Zhang (2004), Nobay and Peel (2000), Tambakis (1999), and Dolado et al. (2004). However, these papers were mainly concerned with the analysis of the problem of inflation bias, by deriving an interest rate rule which is nonlinear, leaving the issues of stability and the possible existence of endogenous cycles in such a framework mostly overlooked. Under the specific form of nonlinearity proposed in our paper (which allows for both convexity and concavity and secures closed form solutions), we show that the introduction of a nonlinear Phillips curve into a fully deterministic structure of the standard model produces significant changes to the major conclusions regarding stability and the efficiency of monetary policy in the standard model. We should emphasize the following main results: (i) instead of a unique fixed point we end up with multiple equilibria; (ii) instead of saddle--path stability, for different sets of parameter values we may have saddle stability, totally unstable and chaotic fixed points (endogenous cycles); (iii) for certain degrees of convexity and/or concavity of the Phillips curve, where endogenous fluctuations arise, one is able to encounter various results that seem interesting. Firstly, when the Central Bank pays attention essentially to inflation targeting, the inflation rate may have a lower mean and is certainly less volatile; secondly, for changes in the degree of price stickiness the results are not are clear cut as in the previous case, however, we can also observe that when such stickiness is high the inflation rate tends to display a somewhat larger mean and also higher volatility; and thirdly, it shows that the target values for inflation and the output gap (π^,x^), both crucially affect the dynamics of the economy in terms of average values and volatility of the endogenous variables --- e.g., the higher the target value of the output gap chosen by the Central Bank, the higher is the inflation rate and its volatility --- while in the linear case only the π^ does so (obviously, only affecting in this case the level of the endogenous variables). Moreover, the existence of endogenous cycles due to chaotic motion may raise serious questions about whether the old dictum of monetary policy (that the Central Bank should conduct policy with discretion instead of commitment) is not still very much in the business of monetary policy.Optimal monetary policy, Interest Rate Rules, Nonlinear Phillips Curve, Endogenous Fluctuations and Stabilization

    Noncommutative Field Theory: Nonrelativistic Fermionic Field Coupled to the Chern-Simons Field in 2+1 Dimensions

    Full text link
    We study a noncommutative nonrelativistic fermionic field theory in 2+1 dimensions coupled to the Chern-Simons field. We perform a perturbative analysis of model and show that up to one loop the ultraviolet divergences are canceled and the infrared divergences are eliminated by the noncommutative Pauli term.Comment: Some references adde

    A simple method for enhanced vibration-based structural health monitoring

    Get PDF
    This study suggests a novel method for structural vibration-based health monitoring for beams which only utilises the first natural frequency of the beam in order to detect and localise a defect. The method is based on the application of a static force in different positions along the beam. It is shown that the application of a static force on a damaged beam induces stresses at the defect which in turn cause changes in the structural natural frequencies. A very simple procedure for damage detection is suggested which uses a static force applied in just one point, in the middle of the beam. Localisation is made using two additional application points of the static force. Damage is modelled as a small notch through the whole width of the beam. The method is demonstrated and validated numerically, using a finite element model of the beam, and experimentally for a simply supported beam. Our results show that the frequency variation with the change of the force application point can be used to detect and in the same time localize very precisely even a very small defect. The method can be extended for health monitoring of other more complicated structures
    corecore