5,968 research outputs found
Open and / or laparoscopic surgical treatment of liver hydatic cysts
Hydatid disease is a severe parasitic disease with a widely ranging distribution. In the human being the liver is the most frequent organ affected. 1 The treatment should be individualized to the morphology, size, number and location of the cysts, that is why a variety of surgical operations have been advocated from complete resection like total pericystectomy or partial hepatectomy to laparoscopy to a minimally invasive procedures like percutaneous aspiration of cysts to conservative drug therapy. 3-4 This study compares laparoscopic versus open management of the hydatid cyst of liver the surgical approach to liver echinococcosis is still a controversial issue and shows our results of surgical treatment of liver hydatid cysts during a 3-years period
The FORS1 catalogue of stellar magnetic field measurements
The FORS1 instrument on the ESO Very Large Telescope was used to obtain
low-resolution circular polarised spectra of nearly a thousand different stars,
with the aim of measuring their mean longitudinal magnetic fields. A catalogue
of FORS1 magnetic measurements would provide a valuable resource with which to
better understand the strengths and limitations of this instrument and of
similar low-dispersion, Cassegrain spectropolarimeters. However, FORS1 data
reduction has been carried out by a number of different groups using a variety
of reduction and analysis techniques. Our understanding of the instrument and
our data reduction techniques have both improved over time. A full re-analysis
of FORS1 archive data using a consistent and fully documented algorithm would
optimise the accuracy and usefulness of a catalogue of field measurements.
Based on the ESO FORS pipeline, we have developed a semi-automatic procedure
for magnetic field determinations, which includes self-consistent checks for
field detection reliability. We have applied our procedure to the full content
of circular spectropolarimetric measurements of the FORS1 archive. We have
produced a catalogue of spectro-polarimetric observations and magnetic field
measurements for about 1400 observations of about 850 different objects. The
spectral type of each object has been accurately classified. We have also been
able to test different methods for data reduction is a systematic way. The
resulting catalogue has been used to produce an estimator for an upper limit to
the uncertainty in a field strength measurement of an early type star as a
function of the signal-to-noise ratio of the observation. While FORS1 is not
necessarily an optimal instrument for the discovery of weak magnetic fields, it
is very useful for the systematic study of larger fields, such as those found
in Ap/Bp stars and in white dwarfs.Comment: Accepted for publication by A&
Scattering from Solutions of Star Polymers
We calculate the scattering intensity of dilute and semi-dilute solutions of
star polymers. The star conformation is described by a model introduced by
Daoud and Cotton. In this model, a single star is regarded as a spherical
region of a semi-dilute polymer solution with a local, position dependent
screening length. For high enough concentrations, the outer sections of the
arms overlap and build a semi-dilute solution (a sea of blobs) where the inner
parts of the actual stars are embedded. The scattering function is evaluated
following a method introduced by Auvray and de Gennes. In the dilute regime
there are three regions in the scattering function: the Guinier region (low
wave vectors, q R << 1) from where the radius of the star can be extracted; the
intermediate region (1 << q R << f^(2/5)) that carries the signature of the
form factor of a star with f arms: I(q) ~ q^(-10/3); and a high wavevector zone
(q R >> f^(2/5)) where the local swollen structure of the polymers gives rise
to the usual q^(-5/3) decay. In the semi-dilute regime the different stars
interact strongly, and the scattered intensity acquires two new features: a
liquid peak that develops at a reciprocal position corresponding to the
star-star distances; and a new large wavevector contribution of the form
q^(-5/3) originating from the sea of blobs.Comment: REVTeX, 12 pages, 4 eps figure
Aortic aneurysm: a surgical point of view
Aortic aneurysms are of different types as different ones are the types of treatment available to us. Following the advent of endovascular surgery, perioperative mortality has been significantly reduced, but open surgery remains the first choice under some occurrences. The purpose of this chapter is to try to clarify the dichotomy between open and endovascular aortic aneurysms in the several types of aortic aneurysms, highlighting the indications and complications to guide to the best therapeutic choice
Multi-rendezvous Spacecraft Trajectory Optimization with Beam P-ACO
The design of spacecraft trajectories for missions visiting multiple
celestial bodies is here framed as a multi-objective bilevel optimization
problem. A comparative study is performed to assess the performance of
different Beam Search algorithms at tackling the combinatorial problem of
finding the ideal sequence of bodies. Special focus is placed on the
development of a new hybridization between Beam Search and the Population-based
Ant Colony Optimization algorithm. An experimental evaluation shows all
algorithms achieving exceptional performance on a hard benchmark problem. It is
found that a properly tuned deterministic Beam Search always outperforms the
remaining variants. Beam P-ACO, however, demonstrates lower parameter
sensitivity, while offering superior worst-case performance. Being an anytime
algorithm, it is then found to be the preferable choice for certain practical
applications.Comment: Code available at https://github.com/lfsimoes/beam_paco__gtoc
A Free-Form Lensing Grid Solution for A1689 with New Mutiple Images
Hubble Space Telescope imaging of the galaxy cluster Abell 1689 has revealed
an exceptional number of strongly lensed multiply-imaged galaxies, including
high-redshift candidates. Previous studies have used this data to obtain the
most detailed dark matter reconstructions of any galaxy cluster to date,
resolving substructures ~25 kpc across. We examine Abell 1689 (hereafter,
A1689) non-parametrically, combining strongly lensed images and weak
distortions from wider field Subaru imaging, and we incorporate member galaxies
to improve the lens solution. Strongly lensed galaxies are often locally
affected by member galaxies, however, these perturbations cannot be recovered
in grid based reconstructions because the lensing information is too sparse to
resolve member galaxies. By adding luminosity-scaled member galaxy deflections
to our smooth grid we can derive meaningful solutions with sufficient accuracy
to permit the identification of our own strongly lensed images, so our model
becomes self consistent. We identify 11 new multiply lensed system candidates
and clarify previously ambiguous cases, in the deepest optical and NIR data to
date from Hubble and Subaru. Our improved spatial resolution brings up new
features not seen when the weak and strong lensing effects are used separately,
including clumps and filamentary dark matter around the main halo. Our
treatment means we can obtain an objective mass ratio between the cluster and
galaxy components, for examining the extent of tidal stripping of the luminous
member galaxies. We find a typical mass-to-light ratios of M/L_B = 21 inside
the r<1 arcminute region that drops to M/L_B = 17 inside the r<40 arcsecond
region. Our model independence means we can objectively evaluate the
competitiveness of stacking cluster lenses for defining the geometric
lensing-distance-redshift relation in a model independent way.Comment: 23 pages with 25 figures Replced with MNRAS submitted version. Some
figures have been corrected and minor text edit
Novelty search for soft robotic space exploration
The use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular application and requirements, the best shape (or body morphology) and locomotion strategy for such robots will vary substantially. Recent developments in soft robotics and evolutionary optimization showed the possibility to simultaneously evolve the morphology and locomotion strategy in simulated trials. The use of techniques such as generative encoding and neural evolution were key to these findings. In this paper, we improve further on this methodology by introducing the use of a novelty measure during the evolution process. We compare fitness search and novelty search in different gravity levels and we consistently find novelty-based search to perform as good as or better than a fitness-based search, while also delivering a greater variety of designs. We propose a combination of the two techniques using fitness-elitism in novelty search to obtain a further improvement. We then use our methodology to evolve the gait and morphology of soft robots at different gravity levels, finding a taxonomy of possible locomotion strategies that are analyzed in the context of space-exploration
Relationships between constructional and visuospatial abilities in normal subjects and in focal brain-damaged patients.
We tested 125 normal subjects and 24 right and 22 left focal brain-damaged patients (RBD and LBD) on the Rey figure copying test and on a battery of perceptual and representational visuospatial tasks, in search of relationships between constructional and visuospatial abilities. Selected RBD and LBD were not affected by severe aphasia, unilateral spatial neglect or general intellectual defects. Both RBD and LBD showed defective performances on the constructional task with respect to normal subjects. As regards visuospatial tasks, both patient groups scored lower than normal subjects in judging angle width and mentally assembling geometrical figures; moreover, RBD, but not LBD, achieved scores significantly lower than healthy controls in judging line orientation and analyzing geometrical figures. Post-hoc comparisons did not reveal any significant differences between RBD and LBD. Multiple regression analysis showed that visuospatial abilities correlate with accuracy in copying geometrical drawings in normal subjects and in RBD, but not in LBD. From a theoretical perspective, these findings support the idea that visual perceptual and representational abilities do play a role in constructional skills
- …