882 research outputs found
Reply to Comment on "Critical analysis of a variational method used to describe molecular electron transport"
We show that the failure of the Delaney-Greer (DG) variational ansatz for
transport demonstrated by us in Phys.\ Rev.\ B {\bf 80}, 165301 (2009) (I) is
not related to an unsuitable constraint that prevents a broken time-reversal
symmetry or to real orbitals, as DG incorrectly claim. The complex orbitals
suggested by them as a way-out solution merely represent a particular case of
the general case considered by us in I, which do not in the least affect our
conclusion.Comment: Manuscript as submitted to Phys. Rev. B on 30 November 2010. Sections
VII, VIII, and IX present significant details, which enlarge the analysis of
the published versio
DIAGNOSTIC ANALYSIS OF THE COST PER UNIT OF PRODUCT
This paper treats the methodology used in the product unit diagnostic analysis by entities where products are obtained in several subordinated entities with management autonomy. It also presents the relations based on which overall effects of the structural changes on cost per product unit are quantified, as well as the relations used in the analysis of some calculation items.cost per product unit; structure; constant costs; variable costs
Recommended from our members
Rotating magnetic field actuation of a multicilia configuration
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.The current paper continues the analysis of a completely novel method of fluid manipulation technology in micro-fluidics systems, inspired by nature, namely by the mechanisms found in ciliates. More information on this subject can be found at http://www.hitech-projects.com/euprojects/artic/. In order to
simulate the drag forces acting on an array of artificial cilia, we have developed a computer code that is based on fundamental solutions of Stokes flow in a semi-infinite domain. The actuation mechanism consists
of a bi-directional rotating excitation magnetic field. The magnetization induced by the magnetic field was calculated in a separate routine based on the Integral Nonlinear Equations Approach with 1D discretization of wire (cilium). Time averaged x-coordinate mass flow rates are computed for several cilium configurations
resulting. The outcome and originality of this paper consist on assessing magnetic actuation as a practical tool for obtaining a consistent one-directional fluid flow.This work has been supported through grant ARTIC FP6-2004-NMP-TI4
Global Schr\"{o}dinger maps
We consider the Schr\"{o}dinger map initial-value problem in dimension two or
greater. We prove that the Schr\"{o}dinger map initial-value problem admits a
unique global smooth solution, provided that the initial data is smooth and
small in the critical Sobolev space. We prove also that the solution operator
extends continuously to the critical Sobolev space.Comment: 60 page
Calculating potentials of mean force and diffusion coefficients from nonequilibirum processes without Jarzynski's equality
In general, the direct application of the Jarzynski equality (JE) to
reconstruct potentials of mean force (PMFs) from a small number of
nonequilibrium unidirectional steered molecular dynamics (SMD) paths is
hindered by the lack of sampling of extremely rare paths with negative
dissipative work. Such trajectories, that transiently violate the second law,
are crucial for the validity of JE. As a solution to this daunting problem, we
propose a simple and efficient method, referred to as the FR method, for
calculating simultaneously both the PMF U(z) and the corresponding diffusion
coefficient D(z) along a reaction coordinate z for a classical many particle
system by employing a small number of fast SMD pullings in both forward (F) and
time reverse (R) directions, without invoking JE. By employing Crook's
transient fluctuation theorem (that is more general than JE) and the stiff
spring approximation, we show that: (i) the mean dissipative work W_d in the F
and R pullings are equal, (ii) both U(z) and W_d can be expressed in terms of
the easily calculable mean work of the F and R processes, and (iii) D(z) can be
expressed in terms of the slope of W_d. To test its viability, the FR method is
applied to determine U(z) and D(z) of single-file water molecules in
single-walled carbon nanotubes (SWNTs). The obtained U(z) is found to be in
very good agreement with the results from other PMF calculation methods, e.g.,
umbrella sampling. Finally, U(z) and D(z) are used as input in a stochastic
model, based on the Fokker-Planck equation, for describing water transport
through SWNTs on a mesoscopic time scale that in general is inaccessible to MD
simulations.Comment: ReVTeX4, 13 pages, 6 EPS figures, Submitted to Journal of Chemical
Physic
Fluctuation-Driven Molecular Transport in an Asymmetric Membrane Channel
Channel proteins, that selectively conduct molecules across cell membranes,
often exhibit an asymmetric structure. By means of a stochastic model, we argue
that channel asymmetry in the presence of non-equilibrium fluctuations, fueled
by the cell's metabolism as observed recently, can dramatically influence the
transport through such channels by a ratchet-like mechanism. For an
aquaglyceroporin that conducts water and glycerol we show that a previously
determined asymmetric glycerol potential leads to enhanced inward transport of
glycerol, but for unfavorably high glycerol concentrations also to enhanced
outward transport that protects a cell against poisoning.Comment: REVTeX4, 4 pages, 3 figures; Accepted for publication in Phys. Rev.
Let
- …