33 research outputs found

    The Transcriptional Repressor TupA in Aspergillus niger Is Involved in Controlling Gene Expression Related to Cell Wall Biosynthesis, Development, and Nitrogen Source Availability.

    Get PDF
    The Tup1-Cyc8 (Ssn6) complex is a well characterized and conserved general transcriptional repressor complex in eukaryotic cells. Here, we report the identification of the Tup1 (TupA) homolog in the filamentous fungus Aspergillus niger in a genetic screen for mutants with a constitutive expression of the agsA gene. The agsA gene encodes a putative alpha-glucan synthase, which is induced in response to cell wall stress in A. niger. Apart from the constitutive expression of agsA, the selected mutant was also found to produce an unknown pigment at high temperatures. Complementation analysis with a genomic library showed that the tupA gene could complement the phenotypes of the mutant. Screening of a collection of 240 mutants with constitutive expression of agsA identified sixteen additional pigment-secreting mutants, which were all mutated in the tupA gene. The phenotypes of the tupA mutants were very similar to the phenotypes of a tupA deletion strain. Further analysis of the tupA-17 mutant and the DeltatupA mutant revealed that TupA is also required for normal growth and morphogenesis. The production of the pigment at 37 degrees C is nitrogen source-dependent and repressed by ammonium. Genome-wide expression analysis of the tupA mutant during exponential growth revealed derepression of a large group of diverse genes, including genes related to development and cell wall biosynthesis, and also protease-encoding genes that are normally repressed by ammonium. Comparison of the transcriptome of up-regulated genes in the tupA mutant showed limited overlap with the transcriptome of caspofungin-induced cell wall stress-related genes, suggesting that TupA is not a general suppressor of cell wall stress-induced genes. We propose that TupA is an important repressor of genes related to development and nitrogen metabolism

    Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

    Get PDF
    Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties

    AFLA-PISTACHIO: Development of a Mechanistic Model to Predict the Aflatoxin Contamination of Pistachio Nuts

    No full text
    In recent years, very many incidences of contamination with aflatoxin B1 (AFB1) in pistachio nuts have been reported as a major global problem for the crop. In Europe, legislation is in force and 12 μg/kg of AFB1 is the maximum limit set for pistachios to be subjected to physical treatment before human consumption. The goal of the current study was to develop a mechanistic, weather-driven model to predict Aspergillus flavus growth and the AFB1 contamination of pistachios on a daily basis from nut setting until harvest. The planned steps were to: (i) build a phenology model to predict the pistachio growth stages, (ii) develop a prototype model named AFLA-pistachio (model transfer from AFLA-maize), (iii) collect the meteorological and AFB1 contamination data from pistachio orchards, (iv) run the model and elaborate a probability function to estimate the likelihood of overcoming the legal limit, and (v) manage a preliminary validation. The internal validation of AFLA-pistachio indicated that 75% of the predictions were correct. In the external validation with an independent three-year dataset, 95.6% of the samples were correctly predicted. According to the results, AFLA-pistachio seems to be a reliable tool to follow the dynamic of AFB1 contamination risk throughout the pistachio growing season

    AFLA-pistachio: development of a mechanistic model to predict aflatoxin contamination of greek pistachio nuts

    No full text
    Pistachios are cultivated worldwide for their high nutritional value and their good flavour. In Greece, the main pistachio variety is Pistachia vera cv Aegina. One of the main regions of pistachio cultivation in Greece is Aegina Island, located close to Athens and the pistachio nuts cultivated there are registered as P.D.O. (Product of Designation of Origin). During the last decades, several surveys on Greek pistachio nuts indicated high contamination with aflatoxin B1 (AFB1), therefore, aflatoxins are considered a major problem for the crop. In Europe, a legislation is in force and 12 \u3bcg/kg of AFB1 is the fixed limit. The ultimate goal of the current study was to develop a mechanistic, weather-driven model, to predict Aspergillus flavus growth and AFB1 contamination in pistachios on a daily base from nut setting until harvest. The planned steps were: i) to develop a prototype model based on AFLA-maize (Battilani et al., 2013), ii) to collect meteorological and AF contamination data in Aegina, iii) to run the model and elaborate a probability function to estimate the likelihood to overcome the legal limit and iv) to manage a preliminary validation. AFLA-pistachio model was developed; the validation was carried out using data collected in 2014 and 2015 as model input and around 70% of pistachio orchards were correctly classified by the model in respect to the legal limit. Results were very promising and AFLA-pistachio model seems to be a useful tool for stakeholders to follow the dynamic of AFB1 contamination risk throughout the pistachio growing season

    AFLA-PISTACHIO: Development of a Mechanistic Model to Predict the Aflatoxin Contamination of Pistachio Nuts

    No full text
    In recent years, very many incidences of contamination with aflatoxin B1 (AFB1) in pistachio nuts have been reported as a major global problem for the crop. In Europe, legislation is in force and 12 \u3bcg/kg of AFB1 is the maximum limit set for pistachios to be subjected to physical treatment before human consumption. The goal of the current study was to develop a mechanistic, weather-driven model to predict Aspergillus flavus growth and the AFB1 contamination of pistachios on a daily basis from nut setting until harvest. The planned steps were to: (i) build a phenology model to predict the pistachio growth stages, (ii) develop a prototype model named AFLA-pistachio (model transfer from AFLA-maize), (iii) collect the meteorological and AFB1 contamination data from pistachio orchards, (iv) run the model and elaborate a probability function to estimate the likelihood of overcoming the legal limit, and (v) manage a preliminary validation. The internal validation of AFLA-pistachio indicated that 75% of the predictions were correct. In the external validation with an independent three-year dataset, 95.6% of the samples were correctly predicted. According to the results, AFLA-pistachio seems to be a reliable tool to follow the dynamic of AFB1 contamination risk throughout the pistachio growing season

    Environmental conditions affecting ochratoxin a during solar drying of grapes: The case of tunnel and open air-drying

    No full text
    Drying optimization, to mitigate fungal growth and Ochratoxin A (OTA) contamination is a key topic for raisin and currant production. Specific indicators of environmental conditions and drying properties were analyzed using two seedless grape varieties (Crimson—red and Thompson— white), artificially inoculated with Aspergillus carbonarius under open air and tunnel drying. The air temperature (T), relative humidity, grape surface temperature (Ts ) and water activity throughout the drying experiment, the grapes’ moisture content and the fungal colonization and OTA contamination during the drying process and their interactions were recorded and critically analyzed. Drying properties such as the water diffusivity (Deff ) and peel resistance to water transfer were estimated. The grapes Ts was 5–7◦C higher in tunnel vs. open air–drying; the infected grapes had higher maximum Ts vs. the control (around 4–6◦C). OTA contamination was higher in tunnel vs. open air–dried grapes, but fungal colonies showed the opposite trend. The Deff was higher in tunnel than in the open air–drying by 54%; the infected grapes had more than 70% higher Deff than the control, differences explained by factors affecting the water transport. This study highlighted CFU and OTA indicators that affect the water availability between red and white grapes during open air and tunnel drying, estimated by the Deff and peel resistance. This raises new issues for future research

    Autophagic components contribute to hypersensitive cell death in Arabidopsis

    Get PDF
    SummaryAutophagy has been implicated as a prosurvival mechanism to restrict programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. This model is based on the observation that HR lesions spread in plants with reduced autophagy gene expression. Here, we examined receptor-mediated HR PCD responses in autophagy-deficient Arabidopsis knockout mutants (atg), and show that infection-induced lesions are contained in atg mutants. We also provide evidence that HR cell death initiated via Toll/Interleukin-1 (TIR)-type immune receptors through the defense regulator EDS1 is suppressed in atg mutants. Furthermore, we demonstrate that PCD triggered by coiled-coil (CC)-type immune receptors via NDR1 is either autophagy-independent or engages autophagic components with cathepsins and other unidentified cell death mediators. Thus, autophagic cell death contributes to HR PCD and can function in parallel with other prodeath pathways
    corecore