488 research outputs found
Homoclinic standing waves in focussing DNLS equations --Variational approach via constrained optimization
We study focussing discrete nonlinear Schr\"{o}dinger equations and present a
new variational existence proof for homoclinic standing waves (bright
solitons). Our approach relies on the constrained maximization of an energy
functional and provides the existence of two one-parameter families of waves
with unimodal and even profile function for a wide class of nonlinearities.
Finally, we illustrate our results by numerical simulations.Comment: new version with revised introduction and improved condition (A3); 16
pages, several figure
On the phenomenology of a Z' coupling only to third-family fermions
The phenomenology of an additional U(1) neutral gauge boson Z' coupled to the
third family of fermions is discussed. One might expect such a particle to
contribute to processes where taus, b and t quarks are produced. Precision data
from LEP1 put severe constraints on the mixing and heavy-boson mass. We find
that the effects of such a particle could not be observed at hadronic
colliders, be it at the Tevatron or the LHC, because of the QCD background. At
LEP2 and future e^+e^- linear colliders, one could instead hope to observe such
effects, in particular for b\bar b final states.Comment: 36 pages, LaTeX, including 12 figure
The Tunka Experiment: Towards a 1-km^2 Cherenkov EAS Array in the Tunka Valley
The project of an EAS Cherenkov array in the Tunka valley/Siberia with an
area of about 1 km^2 is presented. The new array will have a ten times bigger
area than the existing Tunka-25 array and will permit a detailed study of the
cosmic ray energy spectrum and the mass composition in the energy range from
10^15 to 10^18 eV.Comment: 3 pages, 2 figures, to be published in IJMP
Structural and transport properties of GaAs/delta<Mn>/GaAs/InxGa1-xAs/GaAs quantum wells
We report results of investigations of structural and transport properties of
GaAs/Ga(1-x)In(x)As/GaAs quantum wells (QWs) having a 0.5-1.8 ML thick Mn
layer, separated from the QW by a 3 nm thick spacer. The structure has hole
mobility of about 2000 cm2/(V*s) being by several orders of magnitude higher
than in known ferromagnetic two-dimensional structures. The analysis of the
electro-physical properties of these systems is based on detailed study of
their structure by means of high-resolution X-ray diffractometry and
glancing-incidence reflection, which allow us to restore the depth profiles of
structural characteristics of the QWs and thin Mn containing layers. These
investigations show absence of Mn atoms inside the QWs. The quality of the
structures was also characterized by photoluminescence spectra from the QWs.
Transport properties reveal features inherent to ferromagnetic systems: a
specific maximum in the temperature dependence of the resistance and the
anomalous Hall effect (AHE) observed in samples with both "metallic" and
activated types of conductivity up to ~100 K. AHE is most pronounced in the
temperature range where the resistance maximum is observed, and decreases with
decreasing temperature. The results are discussed in terms of interaction of
2D-holes and magnetic Mn ions in presence of large-scale potential fluctuations
related to random distribution of Mn atoms. The AHE values are compared with
calculations taking into account its "intrinsic" mechanism in ferromagnetic
systems.Comment: 15 pages, 9 figure
Discriminating graviton exchange effects from other new physics scenarios in e^+e^- collisions
We study the possibility of uniquely identifying the effects of graviton
exchange from other new physics in high energy e^+e^- annihilation into
fermion-pairs. For this purpose, we use as basic observable a specific
asymmetry among integrated differential distributions, that seems particularly
suitable to directly test for such gravitational effects in the data analysis.Comment: 18 pages, including figures; v2: additional references and
acknowledgements. To appear in PR
Tunka-Rex: energy reconstruction with a single antenna station (ARENA 2016)
The Tunka-Radio extension (Tunka-Rex) is a radio detector for air showers in
Siberia. From 2012 to 2014, Tunka-Rex operated exclusively together with its
host experiment, the air-Cherenkov array Tunka-133, which provided trigger,
data acquisition, and an independent air-shower reconstruction. It was shown
that the air-shower energy can be reconstructed by Tunka-Rex with a precision
of 15\% for events with signal in at least 3 antennas, using the radio
amplitude at a distance of 120\,m from the shower axis as an energy estimator.
Using the reconstruction from the host experiment Tunka-133 for the air-shower
geometry (shower core and direction), the energy estimator can in principle
already be obtained with measurements from a single antenna, close to the
reference distance. We present a method for event selection and energy
reconstruction, requiring only one antenna, and achieving a precision of about
20\%. This method increases the effective detector area and lowers thresholds
for zenith angle and energy, resulting in three times more events than in the
standard reconstruction
Towards a cosmic-ray mass-composition study at Tunka Radio Extension (ARENA 2016)
The Tunka Radio Extension (Tunka-Rex) is a radio detector at the TAIGA
facility located in Siberia nearby the southern tip of Lake Baikal. Tunka-Rex
measures air-showers induced by high-energy cosmic rays, in particular, the
lateral distribution of the radio pulses. The depth of the air-shower maximum,
which statistically depends on the mass of the primary particle, is determined
from the slope of the lateral distribution function (LDF). Using a
model-independent approach, we have studied possible features of the
one-dimensional slope method and tried to find improvements for the
reconstruction of primary mass. To study the systematic uncertainties given by
different primary particles, we have performed simulations using the CONEX and
CoREAS software packages of the recently released CORSIKA v7.5 including the
modern high-energy hadronic models QGSJet-II.04 and EPOS-LHC. The simulations
have shown that the largest systematic uncertainty in the energy deposit is due
to the unknown primary particle. Finally, we studied the relation between the
polarization and the asymmetry of the LDF.Comment: ARENA proceedings, 4 pages, updated reference
- …
