2,304 research outputs found

    Transport and economic development

    Get PDF

    AEM of extraterrestrial materials

    Get PDF
    Modifications to and maintenance of the JEOL 100 CX electron microscope are discussed. Research activity involving extraterrestrial matter, cosmic dust, stratosphere dust, and meteorites is summarized

    Devolution as process: institutional structures, state personnel and transport policy in the United Kingdom

    Get PDF
    Devolution has been described as a key ‘global trend’ over recent decades as governments have decentralised power and responsibilities to subordinate regional institutions (Rodriguez-Pose and Gill, 2003). UK devolution is characterised by its asymmetrical nature with different territories granted different institutional arrangements and powers. In this paper, we seek examine the role of state personnel in mobilising the new institutional machinery and managing the process of devolution, focusing on transport policy. Our research shows a clear contrast between London and Northern Ireland, on the one hand, and Scotland and Wales, on the other, in terms of the effectiveness of political leaders in creating clear policy priorities and momentum in transport

    Transport and economic development

    Get PDF

    Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare

    Full text link
    We study the non-thermal emissions in a solar flare occurring on 2003 May 29 by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This flare shows several typical behaviors of the HXR and microwave emissions: time delay of microwave peaks relative to HXR peaks, loop-top microwave and footpoint HXR sources, and a harder electron energy distribution inferred from the microwave spectrum than from the HXR spectrum. In addition, we found that the time profile of the spectral index of the higher-energy (\gsim 100 keV) HXRs is similar to that of the microwaves, and is delayed from that of the lower-energy (\lsim 100 keV) HXRs. We interpret these observations in terms of an electron transport model called {\TPP}. We numerically solved the spatially-homogeneous {\FP} equation to determine electron evolution in energy and pitch-angle space. By comparing the behaviors of the HXR and microwave emissions predicted by the model with the observations, we discuss the pitch-angle distribution of the electrons injected into the flare site. We found that the observed spectral variations can qualitatively be explained if the injected electrons have a pitch-angle distribution concentrated perpendicular to the magnetic field lines rather than isotropic distribution.Comment: 32 pages, 12 figures, accepted for publication in The Astronomical Journa

    Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry

    Get PDF
    Published: 12 June 2017Mesospheric gravity wave (GW) momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E) experiments (conducted from July 1997 to June 1998) are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions). The received beams were analysed with hybrid Doppler interferometry (HDI) (Holdsworth and Reid, 1998), principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997), later re-introduced by Hocking (2005) and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010) of the accuracy of the meteor radar technique.Andrew J. Spargo, Iain M. Reid, Andrew D. MacKinnon, and David A. Holdswort

    Comment on the paper I. M. Suslov: Finite Size Scaling from the Self Consistent Theory of Localization

    Full text link
    In the recent paper [I.M.Suslov, JETP {\bf 114} (2012) 107] a new scaling theory of electron localization was proposed. We show that numerical data for the quasi-one dimensional Anderson model do not support predictions of this theory.Comment: Comment on the paper arXiv 1104.043

    Finite-size scaling from self-consistent theory of localization

    Full text link
    Accepting validity of self-consistent theory of localization by Vollhardt and Woelfle, we derive the finite-size scaling procedure used for studies of the critical behavior in d-dimensional case and based on the use of auxiliary quasi-1D systems. The obtained scaling functions for d=2 and d=3 are in good agreement with numerical results: it signifies the absence of essential contradictions with the Vollhardt and Woelfle theory on the level of raw data. The results \nu=1.3-1.6, usually obtained at d=3 for the critical exponent of the correlation length, are explained by the fact that dependence L+L_0 with L_0>0 (L is the transversal size of the system) is interpreted as L^{1/\nu} with \nu>1. For dimensions d\ge 4, the modified scaling relations are derived; it demonstrates incorrectness of the conventional treatment of data for d=4 and d=5, but establishes the constructive procedure for such a treatment. Consequences for other variants of finite-size scaling are discussed.Comment: Latex, 23 pages, figures included; additional Fig.8 is added with high precision data by Kramer et a

    Analytical realization of finite-size scaling for Anderson localization. Does the band of critical states exist for d>2?

    Full text link
    An analytical realization is suggested for the finite-size scaling algorithm based on the consideration of auxiliary quasi-1D systems. Comparison of the obtained analytical results with the results of numerical calculations indicates that the Anderson transition point is splitted into the band of critical states. This conclusion is supported by direct numerical evidence (Edwards and Thouless, 1972; Last and Thouless, 1974; Schreiber, 1985; 1990). The possibility of restoring the conventional picture still exists but requires a radical reinterpretetion of the raw numerical data.Comment: PDF, 11 page

    Scaling in the one-dimensional Anderson localization problem in the region of fluctuation states

    Full text link
    We numerically study the distribution function of the conductivity (transmission) in the one-dimensional tight-binding Anderson model in the region of fluctuation states. We show that while single parameter scaling in this region is not valid, the distribution can still be described within a scaling approach based upon the ratio of two fundamental quantities, the localization length, llocl_{loc}, and a new length, lsl_s, related to the integral density of states. In an intermediate interval of the system's length LL, lloc≪L≪lsl_{loc}\ll L\ll l_s, the variance of the Lyapunov exponent does not follow the predictions of the central limit theorem, and may even grow with LL.Comment: Phys. Rev. Lett 90, 126601 (2003) 4 pages, 3 figure
    • …
    corecore