311 research outputs found

    Landau damping in thin films irradiated by a strong laser field

    Full text link
    The rate of linear collisionless damping (Landau damping) in a classical electron gas confined to a heated ionized thin film is calculated. The general expression for the imaginary part of the dielectric tensor in terms of the parameters of the single-particle self-consistent electron potential is obtained. For the case of a deep rectangular well, it is explicitly calculated as a function of the electron temperature in the two limiting cases of specular and diffuse reflection of the electrons from the boundary of the self-consistent potential. For realistic experimental parameters, the contribution of Landau damping to the heating of the electron subsystem is estimated. It is shown that for films with a thickness below about 100 nm and for moderate laser intensities it may be comparable with or even dominate over electron-ion collisions and inner ionization.Comment: 15 pages, 2 figure

    Electron-phonon scattering at the intersection of two Landau levels

    Get PDF
    We predict a double-resonant feature in the magnetic field dependence of the phonon-mediated longitudinal conductivity σxx\sigma_{xx} of a two-subband quasi-two-dimensional electron system in a quantizing magnetic field. The two sharp peaks in σxx\sigma_{xx} appear when the energy separation between two Landau levels belonging to different size-quantization subbands is favorable for acoustic-phonon transitions. One-phonon and two-phonon mechanisms of electron conductivity are calculated and mutually compared. The phonon-mediated interaction between the intersecting Landau levels is considered and no avoided crossing is found at thermal equilibrium.Comment: 13 pages, 8 figure

    Melting Point and Lattice Parameter Shifts in Supported Metal Nanoclusters

    Full text link
    The dependencies of the melting point and the lattice parameter of supported metal nanoclusters as functions of clusters height are theoretically investigated in the framework of the uniform approach. The vacancy mechanism describing the melting point and the lattice parameter shifts in nanoclusters with decrease of their size is proposed. It is shown that under the high vacuum conditions (p<10^-7 torr) the essential role in clusters melting point and lattice parameter shifts is played by the van der Waals forces of cluster-substrate interation. The proposed model satisfactorily accounts for the experimental data.Comment: 6 pages, 3 figures, 1 tabl

    Three-loop verification of a new algorithm for the calculation of a β\beta-function in supersymmetric theories regularized by higher derivatives for the case of N=1{\cal N}=1 SQED

    Full text link
    We verify a recently proposed method for obtaining a β\beta-function of N=1{\cal N}=1 supersymmetric gauge theories regularized by higher derivatives by an explicit calculation. According to this method, a β\beta-function can be found by calculating specially modified vacuum supergraphs instead of a much larger number of the two-point superdiagrams. The result is produced in the form of a certain integral of double total derivatives with respect to the loop momenta. Here we compare the results obtained for the three-loop β\beta-function of N=1{\cal N}=1 SQED in the general ξ\xi-gauge with the help of this method and with the help of the standard calculation. Their coincidence confirms the correctness of the new method and the general argumentation used for its derivation. Also we verify that in the considered approximation the NSVZ relation is valid for the renormalization group functions defined in terms of the bare coupling constant and for the ones defined in terms of the renormalized coupling constant in the HD+MSL scheme, both its sides being gauge-independent.Comment: 19 pages, 8 figures; title changed, minor corrections; the final version to appear in Nuclear Physics

    Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors

    Full text link
    Thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths shows that the experimental cut-off in the efficiency at near-infrared wavelengths is most likely caused by the local deficiency of Cooper pairs available for current transport. For both materials the reciprocal cut-off wavelength scales with the wire width whereas the scaling factor quantitatively agrees with the hot-spot detection models. Comparison of the experimental data with vortex-assisted detection scenarios shows that these models predict a stronger dependence of the cut-off wavelength on the wire width.Comment: 16 pages, 6 figure

    "Cold Melting" of Invar Alloys

    Full text link
    An anomalously strong volume magnetostriction in Invars may lead to a situation when at low temperatures the dislocation free energy becomes negative and a multiple generation of dislocations becomes possible. This generation induces a first order phase transition from the FCC crystalline to an amorphous state, and may be called "cold melting". The possibility of the cold melting in Invars is connected with the fact that the exchange energy contribution into the dislocation self energy in Invars is strongly enhanced, as compared to conventional ferromagnetics, due to anomalously strong volume magnetostriction. The possible candidate, where this effect can be observed, is a FePt disordered Invar alloy in which the volume magnetostriction is especially large
    • …
    corecore