7,438 research outputs found
Direct detection of electron backscatter diffraction patterns.
We report the first use of direct detection for recording electron backscatter diffraction patterns. We demonstrate the following advantages of direct detection: the resolution in the patterns is such that higher order features are visible; patterns can be recorded at beam energies below those at which conventional detectors usefully operate; high precision in cross-correlation based pattern shift measurements needed for high resolution electron backscatter diffraction strain mapping can be obtained. We also show that the physics underlying direct detection is sufficiently well understood at low primary electron energies such that simulated patterns can be generated to verify our experimental data
European Non-native Species in Aquaculture Risk Analysis Scheme - a summary of assessment protocols and decision support tools for use of alien species in aquaculture
The European Non-native Species in Aquaculture Risk Analysis Scheme (ENSARS) was developed in response to European 'Council Regulation No. 708/2007 of 11 June 2007 concerning use of alien and locally absent species in aquaculture' to provide protocols for identifying and evaluating the potential risks of using non-native species in aquaculture. ENSARS is modular in structure and adapted from non-native species risk assessment schemes developed by the European and Mediterranean Plant Protection Organisation and for the UK. Seven of the eight ENSARS modules contain protocols for evaluating the risks of escape, introduction to and establishment in open waters, of any non-native aquatic organism being used (or associated with those used) in aquaculture, that is, transport pathways, rearing facilities, infectious agents, and the potential organism, ecosystem and socio-economic impacts. A concluding module is designed to summarise the risks and consider management options. During the assessments, each question requires the assessor to provide a response and confidence ranking for that response based on expert opinion. Each module can also be used individually, and each requires a specific form of expertise. Therefore, a multidisciplinary assessment team is recommended for its completion
Light response of pure CsI calorimeter crystals painted with wavelength-shifting lacquer
We have measured scintillation properties of pure CsI crystals used in the
shower calorimeter built for a precise determination of the pi+ -> pi0 e+ nu
decay rate at the Paul Scherrer Institute (PSI). All 240 individual crystals
painted with a special wavelength-shifting solution were examined in a
custom-build detection apparatus (RASTA=radioactive source tomography
apparatus) that uses a 137Cs radioactive gamma source, cosmic muons and a light
emitting diode as complementary probes of the scintillator light response. We
have extracted the total light output, axial light collection nonuniformities
and timing responses of the individual CsI crystals. These results predict
improved performance of the 3 pi sr PIBETA calorimeter due to the painted
lateral surfaces of 240 CsI crystals. The wavelength-shifting paint treatment
did not affect appreciably the total light output and timing resolution of our
crystal sample. The predicted energy resolution for positrons and photons in
the energy range of 10-100 MeV was nevertheless improved due to the more
favorable axial light collection probability variation. We have compared
simulated calorimeter ADC spectra due to 70 MeV positrons and photons with a
Monte Carlo calculation of an ideal detector light response.Comment: Elsevier LaTeX, 35 pages in e-print format, 15 Postscript Figures and
4 Tables, also available at
http://pibeta.phys.virginia.edu/~pibeta/subprojects/csipro/tomo/rasta.p
Fluorescence during Doppler cooling of a single trapped atom
We investigate the temporal dynamics of Doppler cooling of an initially hot
single trapped atom in the weak binding regime using a semiclassical approach.
We develop an analytical model for the simplest case of a single vibrational
mode for a harmonic trap, and show how this model allows us to estimate the
initial energy of the trapped particle by observing the fluorescence rate
during the cooling process. The experimental implementation of this temperature
measurement provides a way to measure atom heating rates by observing the
temperature rise in the absence of cooling. This method is technically
relatively simple compared to conventional sideband detection methods, and the
two methods are in reasonable agreement. We also discuss the effects of RF
micromotion, relevant for a trapped atomic ion, and the effect of coupling
between the vibrational modes on the cooling dynamics.Comment: 12 pages, 11 figures, Submitted to Phys. Rev.
Improved Search for Heavy Neutrinos in the Decay
A search for massive neutrinos has been made in the decay . No evidence was found for extra peaks in the positron energy spectrum
indicative of pion decays involving massive neutrinos (). Upper limits (90 \% C.L.) on the neutrino mixing matrix element
in the neutrino mass region 60--135 MeV/ were set, which are
%representing an order of magnitude improvement over previous results
Status of the TRIUMF PIENU Experiment
The PIENU experiment at TRIUMF aims to measure the pion decay branching ratio
with precision % to provide a sensitive test of electron-muon
universality in weak interactions. The current status of the PIENU experiment
is presented.Comment: Talk presented CIPANP2015. 8 pages, LaTeX, 4 eps figure
Parallax of PSR J1744-1134 and the Local Interstellar Medium
We present the annual trigonometric parallax of PSR J1744-1134 derived from
an analysis of pulse times of arrival. The measured parallax, pi = 2.8+/-0.3
mas ranks among the most precisely determined distances to any pulsar. The
parallax distance of 357+/-39 pc is over twice that derived from the dispersion
measure using the Taylor & Cordes model for the Galactic electron distribution.
The mean electron density in the path to the pulsar, n_e = (0.0088 +/- 0.0009)
cm^{-3}, is the lowest for any disk pulsar. We have compared the n_e for PSR
J1744-1134 with those for another 11 nearby pulsars with independent distance
estimates. We conclude that there is a striking asymmetry in the distribution
of electrons in the local interstellar medium. The electron column densities
for pulsars in the third Galactic quadrant are found to be systematically
higher than for those in the first. The former correlate with the position of
the well known local HI cavity in quadrant three. The excess electrons within
the cavity may be in the form of HII clouds marking a region of interaction
between the local hot bubble and a nearby superbubble.Comment: revised version accepted for publication in ApJ Letters; reanalysis
of uncertainty in parallax measure and changes to fig
Percolation in invariant Poisson graphs with i.i.d. degrees
Let each point of a homogeneous Poisson process in R^d independently be
equipped with a random number of stubs (half-edges) according to a given
probability distribution mu on the positive integers. We consider
translation-invariant schemes for perfectly matching the stubs to obtain a
simple graph with degree distribution mu. Leaving aside degenerate cases, we
prove that for any mu there exist schemes that give only finite components as
well as schemes that give infinite components. For a particular matching scheme
that is a natural extension of Gale-Shapley stable marriage, we give sufficient
conditions on mu for the absence and presence of infinite components
- …