2,217 research outputs found
Effects of Mass Media and Cultural Drift in a Model for Social Influence
In the context of an extension of Axelrod's model for social influence, we
study the interplay and competition between the cultural drift, represented as
random perturbations, and mass media, introduced by means of an external
homogeneous field. Unlike previous studies [J. C. Gonz\'alez-Avella {\it et
al}, Phys. Rev. E {\bf 72}, 065102(R) (2005)], the mass media coupling proposed
here is capable of affecting the cultural traits of any individual in the
society, including those who do not share any features with the external
message. A noise-driven transition is found: for large noise rates, both the
ordered (culturally polarized) phase and the disordered (culturally fragmented)
phase are observed, while, for lower noise rates, the ordered phase prevails.
In the former case, the external field is found to induce cultural ordering, a
behavior opposite to that reported in previous studies using a different
prescription for the mass media interaction. We compare the predictions of this
model to statistical data measuring the impact of a mass media vasectomy
promotion campaign in Brazil.Comment: 10 pages, 3 figures; minor changes; added references. To appear in
IJMP
Adaptation and enslavement in endosymbiont-host associations
The evolutionary persistence of symbiotic associations is a puzzle.
Adaptation should eliminate cooperative traits if it is possible to enjoy the
advantages of cooperation without reciprocating - a facet of cooperation known
in game theory as the Prisoner's Dilemma. Despite this barrier, symbioses are
widespread, and may have been necessary for the evolution of complex life. The
discovery of strategies such as tit-for-tat has been presented as a general
solution to the problem of cooperation. However, this only holds for
within-species cooperation, where a single strategy will come to dominate the
population. In a symbiotic association each species may have a different
strategy, and the theoretical analysis of the single species problem is no
guide to the outcome. We present basic analysis of two-species cooperation and
show that a species with a fast adaptation rate is enslaved by a slowly
evolving one. Paradoxically, the rapidly evolving species becomes highly
cooperative, whereas the slowly evolving one gives little in return. This helps
understand the occurrence of endosymbioses where the host benefits, but the
symbionts appear to gain little from the association.Comment: v2: Correction made to equations 5 & 6 v3: Revised version accepted
in Phys. Rev. E; New figure adde
Opinion dynamics: rise and fall of political parties
We analyze the evolution of political organizations using a model in which
agents change their opinions via two competing mechanisms. Two agents may
interact and reach consensus, and additionally, individual agents may
spontaneously change their opinions by a random, diffusive process. We find
three distinct possibilities. For strong diffusion, the distribution of
opinions is uniform and no political organizations (parties) are formed. For
weak diffusion, parties do form and furthermore, the political landscape
continually evolves as small parties merge into larger ones. Without diffusion,
a pattern develops: parties have the same size and they possess equal niches.
These phenomena are analyzed using pattern formation and scaling techniques.Comment: 5 pages, 5 figure
Dâ Dopamine Receptors Colocalize Regulator of G-Protein Signaling 9-2 (RGS9-2) via the RGS9 DEP Domain, and RGS9 Knock-Out Mice Develop Dyskinesias Associated with Dopamine Pathways
Regulator of G-protein signaling 9-2 (RGS9-2), a member of the RGS family of Gα GTPase accelerating proteins, is expressed specifically in the striatum, which participates in antipsychotic-induced tardive dyskinesia and in levodopa-induced dyskinesia. We report that RGS9 knock-out mice develop abnormal involuntary movements when inhibition of dopaminergic transmission is followed by activation of Dâ-like dopamine receptors (DRs). These abnormal movements resemble drug-induced dyskinesia more closely than other rodent models. Recordings from striatal neurons of these mice establish that activation of Dâ-like DRs abnormally inhibits glutamate-elicited currents. We show that RGS9-2, via its DEP domain (for Disheveled, EGL-10, Pleckstrin homology), colocalizes with DâDRs when coexpressed in mammalian cells. Recordings from oocytes coexpressing DâDR or the m2 muscarinic receptor and G-protein-gated inward rectifier potassium channels show that RGS9-2, via its DEP domain, preferentially accelerates the termination of DâDR signals. Thus, alterations in RGS9-2 may be a key factor in the pathway leading from DâDRs to the side effects associated with the treatment both of psychoses and Parkinson's disease
Communication in networks with hierarchical branching
We present a simple model of communication in networks with hierarchical
branching. We analyze the behavior of the model from the viewpoint of critical
systems under different situations. For certain values of the parameters, a
continuous phase transition between a sparse and a congested regime is observed
and accurately described by an order parameter and the power spectra. At the
critical point the behavior of the model is totally independent of the number
of hierarchical levels. Also scaling properties are observed when the size of
the system varies. The presence of noise in the communication is shown to break
the transition. Despite the simplicity of the model, the analytical results are
a useful guide to forecast the main features of real networks.Comment: 4 pages, 3 figures. Final version accepted in PR
Remarks on the naturality of quantization
Hamiltonian quantization of an integral compact symplectic manifold M depends
on a choice of compatible almost complex structure J. For open sets U in the
set of compatible almost complex structures and small enough values of Planck's
constant, the Hilbert spaces of the quantization form a bundle over U with a
natural connection. In this paper we examine the dependence of the Hilbert
spaces on the choice of J, by computing the semi-classical limit of the
curvature of this connection. We also show that parallel transport provides a
link between the action of the group Symp(M) of symplectomorphisms of M and the
Schrodinger equation.Comment: 20 page
Berezin Quantization of Gauged WZW and Coset Models
Gauged WZW and coset models are known to be useful to prove holomorphic
factorization of the partition function of WZW and coset models. In this note
we show that these gauged models can be also important to quantize the theory
in the context of the Berezin formalism. For gauged coset models Berezin
quantization procedure also admits a further holomorphic factorization in the
complex structure of the moduli space.Comment: 15+1 pages, no figures, revte
Evolutionary Games with Affine Fitness Functions: Applications to Cancer
We analyze the dynamics of evolutionary games in which fitness is defined as
an affine function of the expected payoff and a constant contribution. The
resulting inhomogeneous replicator equation has an homogeneous equivalent with
modified payoffs. The affine terms also influence the stochastic dynamics of a
two-strategy Moran model of a finite population. We then apply the affine
fitness function in a model for tumor-normal cell interactions to determine
which are the most successful tumor strategies. In order to analyze the
dynamics of concurrent strategies within a tumor population, we extend the
model to a three-strategy game involving distinct tumor cell types as well as
normal cells. In this model, interaction with normal cells, in combination with
an increased constant fitness, is the most effective way of establishing a
population of tumor cells in normal tissue.Comment: The final publication is available at http://www.springerlink.com,
http://dx.doi.org/10.1007/s13235-011-0029-
Coherent Moving States in Highway Traffic (Originally: Moving Like a Solid Block)
Recent advances in multiagent simulations have made possible the study of
realistic traffic patterns and allow to test theories based on driver
behaviour. Such simulations also display various empirical features of traffic
flows, and are used to design traffic controls that maximise the throughput of
vehicles in heavily transited highways. In addition to its intrinsic economic
value, vehicular traffic is of interest because it may throw light on some
social phenomena where diverse individuals competitively try to maximise their
own utilities under certain constraints.
In this paper, we present simulation results that point to the existence of
cooperative, coherent states arising from competitive interactions that lead to
a new phenomenon in heterogeneous highway traffic. As the density of vehicles
increases, their interactions cause a transition into a highly correlated state
in which all vehicles practically move with the same speed, analogous to the
motion of a solid block. This state is associated with a reduced lane changing
rate and a safe, high and stable flow. It disappears as the vehicle density
exceeds a critical value. The effect is observed in recent evaluations of Dutch
traffic data.Comment: Submitted on April 21, 1998. For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.html and
http://www.parc.xerox.com/dynamics
- âŠ