1,188 research outputs found
Recommended from our members
Formation of the Wink Sink, A Salt Dissolution and Collapse Feature, Winkler County, Texas
UT Librarie
Multiple-function multi-input/multi-output digital control and on-line analysis
The design and capabilities of two digital controller systems for aeroelastic wind-tunnel models are described. The first allowed control of flutter while performing roll maneuvers with wing load control as well as coordinating the acquisition, storage, and transfer of data for on-line analysis. This system, which employs several digital signal multi-processor (DSP) boards programmed in high-level software languages, is housed in a SUN Workstation environment. A second DCS provides a measure of wind-tunnel safety by functioning as a trip system during testing in the case of high model dynamic response or in case the first DCS fails. The second DCS uses National Instruments LabVIEW Software and Hardware within a Macintosh environment
On-line analysis capabilities developed to support the AFW wind-tunnel tests
A variety of on-line analysis tools were developed to support two active flexible wing (AFW) wind-tunnel tests. These tools were developed to verify control law execution, to satisfy analysis requirements of the control law designers, to provide measures of system stability in a real-time environment, and to provide project managers with a quantitative measure of controller performance. Descriptions and purposes of the developed capabilities are presented along with examples. Procedures for saving and transferring data for near real-time analysis, and descriptions of the corresponding data interface programs are also presented. The on-line analysis tools worked well before, during, and after the wind tunnel test and proved to be a vital and important part of the entire test effort
Development and testing of methodology for evaluating the performance of multi-input/multi-output digital control systems
A Controller Performance Evaluation (CPE) methodology for multi-input/multi-output digital control systems was developed and tested on an aeroelastic wind-tunnel model. Modern signal processing methods were used to implement control laws and to acquire time domain data of the whole system (controller and plant) from which appropriate transfer matrices of the control system could be generated. Matrix computational procedures were used to calculate singular values of return-difference matrices at the plant input and output points to evaluate the performance of the control system. The CPE procedures effectively identified potentially destabilizing controllers and confirmed the satisfactory performance of stabilizing ones
The FLASHES Survey I: Integral Field Spectroscopy of the CGM around 48 QSOs
We present the pilot study component of the Fluorescent Lyman-Alpha
Structures in High-z Environments (FLASHES) Survey; the largest integral-field
spectroscopy survey to date of the circumgalactic medium at . We
observed 48 quasar fields between 2015 and 2018 with the Palomar Cosmic Web
Imager (Matuszewski et al. 2010). Extended HI Lyman- emission
is discovered around 42/48 of the observed quasars, ranging in projected,
flux-weighted radius from 21-71 proper kiloparsecs (pkpc), with 26 nebulae
exceeding in effective diameter. The circularly averaged
surface brightness radial profile peaks at a maximum of
( adjusted for
cosmological dimming) and luminosities range from
to
. The emission appears to have a highly
eccentric morphology and a maximum covering factor of ( for giant
nebulae). On average, the nebular spectra are red-shifted with respect to both
the systemic redshift and Ly peak of the quasar spectrum. The
integrated spectra of the nebulae mostly have single or double-peaked line
shapes with global dispersions ranging from to
, though the individual (Gaussian) components of lines
with complex shapes mostly appear to have dispersions
, and the flux-weighted velocity centroids of the lines
vary by thousands of with respect to the systemic QSO
redshifts. Finally, the root-mean-square velocities of the nebulae are found to
be consistent with gravitational motions expected in dark matter halos of mass
. We compare these results to existing
surveys at both higher and lower redshift
Joint and individual analysis of breast cancer histologic images and genomic covariates
A key challenge in modern data analysis is understanding connections between
complex and differing modalities of data. For example, two of the main
approaches to the study of breast cancer are histopathology (analyzing visual
characteristics of tumors) and genetics. While histopathology is the gold
standard for diagnostics and there have been many recent breakthroughs in
genetics, there is little overlap between these two fields. We aim to bridge
this gap by developing methods based on Angle-based Joint and Individual
Variation Explained (AJIVE) to directly explore similarities and differences
between these two modalities. Our approach exploits Convolutional Neural
Networks (CNNs) as a powerful, automatic method for image feature extraction to
address some of the challenges presented by statistical analysis of
histopathology image data. CNNs raise issues of interpretability that we
address by developing novel methods to explore visual modes of variation
captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features.
Our results provide many interpretable connections and contrasts between
histopathology and genetics
FIREBall-2: advancing TRL while doing proof-of-concept astrophysics on a suborbital platform
Here we discuss advances in UV technology over the last decade, with an emphasis on photon counting, low noise, high efficiency detectors in sub-orbital programs. We focus on the use of innovative UV detectors in a NASA astrophysics balloon telescope, FIREBall-2, which successfully flew in the Fall of 2018. The FIREBall-2 telescope is designed to make observations of distant galaxies to understand more about how they evolve by looking for diffuse hydrogen in the galactic halo. The payload utilizes a 1.0-meter class telescope with an ultraviolet multi-object spectrograph and is a joint collaboration between Caltech, JPL, LAM, CNES, Columbia, the University of Arizona, and NASA. The improved detector technology that was tested on FIREBall-2 can be applied to any UV mission. We discuss the results of the flight and detector performance. We will also discuss the utility of sub-orbital platforms (both balloon payloads and rockets) for testing new technologies and proof-of-concept scientific ideas
The fourth flight of CHESS: spectral resolution enhancements for high-resolution FUV spectroscopy
In this proceeding, we describe the scientific motivation and technical development of the Colorado Highresolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing of components for the fourth and final launch of the payload (CHESS-4). CHESS is a far ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium. CHESS is an objective echelle spectrograph, which uses a mechanically-ruled echelle and a powered (f/12.4) cross-dispersing grating; it is designed to achieve a resolving power R > 100,000 over the band pass λλ 1000–1600 Å. CHESS-4 utilizes a 40 mm-diameter cross-strip anode readout microchannel plate detector, fabricated by Sensor Sciences LLC, to achieve high spatial resolution with high global count rate capabilities (∼ MHz). An error in the fabrication of the cross disperser limited the achievable resolution on previous launches of the payload to R ∼ 4000. To remedy this for CHESS-4, we physically stress the echelle grating, introducing a shallow toroidal curvature to the surface of the optic. Preliminary laboratory measurements of the resulting spectrum show a factor of 4–5 improvement to the resolving power. Results from final efficiency and reflectivity measurements for the optical components of CHESS-4 are presented, along with the pre-flight laboratory spectra and calibration results. CHESS-4 launched on 17 April 2018 aboard NASA/University of Colorado Boulder sounding rocket mission 36.333 UG. We present flight results for the observation of the γ Ara sightline
- …
