557 research outputs found

    Reply to "Comment on 'Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate'"

    Full text link
    In the Comment by M. Mackie \textit{et al.} [arXiv: physics/0212111 v.4], the authors suggest that the molecular conversion efficiency in atom-molecule STIRAP can be improved by lowering the initial atomic density, which in turn requires longer pulse durations to maintain adiabaticity. Apart from the fact that the mean-field approximation becomes questionable at low densities, we point out that a low-density strategy with longer pulses has several problems. It generally requires higher pulse energies, and increases radiative losses. We also show that even within the approximations used in the Comment, their example leads to no efficiency improvement compared to our high-density case. In a more careful analysis including radiative losses neglected in the Comment, the proposed strategy gives almost no conversion owing to the longer pulse durations required.Comment: Accepted for publication in Phys. Rev.

    Bragg spectroscopy of a superfluid Bose-Hubbard gas

    Full text link
    Bragg spectroscopy is used to measure excitations of a trapped, quantum-degenerate gas of 87Rb atoms in a 3-dimensional optical lattice. The measurements are carried out over a range of optical lattice depths in the superfluid phase of the Bose-Hubbard model. For fixed wavevector, the resonant frequency of the excitation is found to decrease with increasing lattice depth. A numerical calculation of the resonant frequencies based on Bogoliubov theory shows a less steep rate of decrease than the measurements.Comment: 11 pages, 4 figure

    Linking Ultracold Polar Molecules

    Get PDF
    We predict that pairs of polar molecules can be weakly bound together in an ultracold environment, provided that a dc electric field is present. The field that links the molecules together also strongly influences the basic properties of the resulting dimer, such as its binding energy and predissociation lifetime. Because of their long-range character these dimers will be useful in disentangling cold collision dynamics of polar molecules. As an example, we estimate the microwave photoassociation yield for OH-OH cold collisions.Comment: 4 pages 2 figure

    Multi-channel scattering and Feshbach resonances: Effective theory, phenomenology, and many-body effects

    Full text link
    A low energy effective theory based on a microscopic multi-channel description of the atom-atom interaction is derived for the scattering of alkali atoms in different hyperfine states. This theory describes all scattering properties, including medium effects, in terms of the singlet and triplet scattering lengths and the range of the atom-atom potential and provides a link between a microscopic description of Feshbach scattering and more phenomenological approaches. It permits the calculation of medium effects on the resonance coming from the occupation of closed channel states. The examination of such effects are demonstrated to be of particular relevance to an experimentally important Feshbach resonance for 40^{40}K atoms. We analyze a recent rethermalization rate experiment on 40^{40}K and demonstrate that a measurement of the temperature dependence of this rate can determine the magnetic moment of the Feshbach molecule. Finally, the energy dependence of the Feshbach interaction is shown to introduce a negative effective range inversely proportional to the width of the resonance. Since our theory is based on a microscopic multi-channel picture, it allows the explicit calculation of corrections to commonly used approximations such as the neglect of the effective range and the treatment of the Feshbach molecule as a point boson.Comment: 10 pages, 5 figures. Typos corrected. Accepted for PR

    Cavity induced modifications to the resonance fluorescence and probe absorption of a laser-dressed V atom

    Full text link
    A cavity-modified master equation is derived for a coherently driven, V-type three-level atom coupled to a single-mode cavity in the bad cavity limit. We show that population inversion in both the bare and dressed-state bases may be achieved, originating from the enhancement of the atom-cavity interaction when the cavity is resonant with an atomic dressed-state transition. The atomic populations in the dressed state representation are analysed in terms of the cavity-modified transition rates. The atomic fluorescence spectrum and probe absorption spectrum also investigated, and it is found that the spectral profiles may be controlled by adjusting the cavity frequency. Peak suppression and line narrowing occur under appropriate conditions.Comment: 12 pages, 10 postscript figures, to be appeared in Phys. Rev.

    Elevated Cholesterol in the Coxiella burnetii Intracellular Niche Is Bacteriolytic

    Get PDF
    Coxiella burnetii is an intracellular bacterial pathogen and a significant cause of culture-negative endocarditis in the United States. Upon infection, the nascent Coxiella phagosome fuses with the host endocytic pathway to form a large lysosome-like vacuole called the parasitophorous vacuole (PV). The PV membrane is rich in sterols, and drugs perturbing host cell cholesterol homeostasis inhibit PV formation and bacterial growth. Using cholesterol supplementation of a cholesterol-free cell model system, we found smaller PVs and reduced Coxiella growth as cellular cholesterol concentration increased. Further, we observed in cells with cholesterol a significant number of nonfusogenic PVs that contained degraded bacteria, a phenotype not observed in cholesterol-free cells. Cholesterol had no effect on axenic Coxiella cultures, indicating that only intracellular bacteria are sensitive to cholesterol. Live-cell microscopy revealed that both plasma membrane-derived cholesterol and the exogenous cholesterol carrier protein low-density lipoprotein (LDL) traffic to the PV. To test the possibility that increasing PV cholesterol levels affects bacterial survival, infected cells were treated with U18666A, a drug that traps cholesterol in lysosomes and PVs. U18666A treatment led to PVs containing degraded bacteria and a significant loss in bacterial viability. The PV pH was significantly more acidic in cells with cholesterol or cells treated with U18666A, and the vacuolar ATPase inhibitor bafilomycin blocked cholesterol-induced PV acidification and bacterial death. Additionally, treatment of infected HeLa cells with several FDA-approved cholesterol-altering drugs led to a loss of bacterial viability, a phenotype also rescued by bafilomycin. Collectively, these data suggest that increasing PV cholesterol further acidifies the PV, leading to Coxiella death.IMPORTANCE The intracellular Gram-negative bacterium Coxiella burnetii is a significant cause of culture-negative infectious endocarditis, which can be fatal if untreated. The existing treatment strategy requires prolonged antibiotic treatment, with a 10-year mortality rate of 19% in treated patients. Therefore, new clinical therapies are needed and can be achieved by better understanding C. burnetii pathogenesis. Upon infection of host cells, C. burnetii grows within a specialized replication niche, the parasitophorous vacuole (PV). Recent data have linked cholesterol to intracellular C. burnetii growth and PV formation, leading us to further decipher the role of cholesterol during C. burnetii-host interaction. We observed that increasing PV cholesterol concentration leads to increased acidification of the PV and bacterial death. Further, treatment with FDA-approved drugs that alter host cholesterol homeostasis also killed C. burnetii through PV acidification. Our findings suggest that targeting host cholesterol metabolism might prove clinically efficacious in controlling C. burnetii infection

    Controlling two-species Mott-insulator phses in an optical lattice to form an array of dipolar molecules

    Full text link
    We consider the transfer of a two-species Bose-Einstein condensate into an optical lattice with a density such that that a Mott-insulator state with one atom per species per lattice site is obtained in the deep lattice regime. Depending on collision parameters the result could be either a `mixed' or a `separated' Mott-insulator phase. Such a `mixed' two-species insulator could then be photo-associated into an array of dipolar molecules suitable for quantum computation or the formation of a dipolar molecular condensate. For the case of a 87^{87}Rb-41^{41}K two-species BEC, however, the large inter-species scattering length makes obtaining the desired `mixed' Mott insulator phase difficult. To overcome this difficulty we investigate the effect of varying the lattice frequency on the mean-field interaction and find a favorable parameter regime under which a lattice of dipolar molecules could be generated

    The electron electric dipole moment enhancement factors of Rubidium and Caesium atoms

    Full text link
    The enhancement factors of the electric dipole moment (EDM) of the ground states of two paramagnetic atoms; rubidium (Rb) and caesium (Cs) which are sensitive to the electron EDM are computed using the relativistic coupled-cluster theory and our results are compared with the available calculations and measurements. The possibility of improving the limit for the electron EDM using the results of our present work is pointed out.Comment: AISAMP7 Conference paper, Accepted in Journal of Physics: Conference Series: 200
    • …
    corecore