24 research outputs found

    Tumor-specific mutations in low-frequency genes affect their functional properties

    Get PDF
    Causal genetic changes in oligodendrogliomas (OD) with 1p/19q co-deletion include mutations in IDH1, IDH2, CIC, FUBP1, TERT promoter and NOTCH1. However, it is generally assumed that more somatic mutations are required for tumorigenesis. This study aimed to establish whether genes mutated at low frequency can be involved in OD initiation and/or progression. We performed whole-genome sequencing on three anaplastic ODs with 1p/19q co-deletion. To estimate mutation frequency, we performed targeted resequencing on an additional 39 ODs. Whole-genome sequencing identified a total of 55 coding mutations (range 8–32 mutations per tumor), including known abnormalities in IDH1, IDH2, CIC and FUBP1. We also identified mutations in genes, most of which were previously not implicated in ODs. Targeted resequencing on 39 additional ODs confirmed that these genes are mutated at low frequency. Most of the mutations identified were predicted to have a deleterious functional effect. Functional analysis on a subset of these genes (e.g. NTN4 and MAGEH1) showed that the mutation affects the subcellular localization of the protein (n = 2/12). In addition, HOG cells stably expressing mutant GDI1 or XPO7 showed altered cell proliferation compared to those expressing wildtype constructs. Similarly, HOG cells expressing mutant SASH3 or GDI1 showed altered migration. The significantly higher rate of predicted deleterious mutations, the changes in subcellular localization and the effects on proliferation and/or migration indicate that many of these genes functionally may contribute to gliomagenesis and/or progression. These low-frequency genes and their affected pathways may provide new treatment targets for this tumor type

    Pollitt syndrome patients carry mutation in TTDN1

    Get PDF
    Complete human genome sequencing was used to identify the causative mutation in a family with Pollitt syndrome (MIM #. 275550), comprising two non-consanguineous parents and their two affected children. The patient's symptoms were reminiscent of the non-photosensitive form of recessively inherited trichothiodystrophy (TTD). A mutation in the TTDN1/. C7orf11 gene, a gene that is known to be involved in non-photosensitive TTD, had been excluded by others by Sanger sequencing. Unexpectedly, we did find a homozygous single-base pair deletion in the coding region of this gene, a mutation that is known to cause non-photosensitive TTD. The deleterious variant causing a frame shift at amino acid 93 (C326delA) followed the right mode of inheritance in the family and was independently validated using conventional DNA sequencing. We expect this novel DNA sequencing technology to help redefine phenotypic and genomic variation in patients with (mono) genetic disorders in an unprecedented manner

    FLNC missense variants in familial noncompaction cardiomyopathy

    Get PDF
    The majority of familial noncompaction cardiomyopathy (NCCM) is explained by pathogenic variants in the same sarcomeric genes that are associated with hypertrophic (HCM) and dilated (DCM) cardiomyopathy. Pathogenic variants in the filamin C gene (FLNC) have been linked to HCM and DCM. We expand the spectrum of FLNC related cardiomyopathies by presenting two families with likely pathogenic FLNC variants showing familial segregation of NCCM and concurrent coarctation of the aorta and/or mitral valve abnormalities

    First genetic analysis of aneurysm genes in familial and sporadic abdominal aortic aneurysm

    Get PDF
    Genetic causes for abdominal aortic aneurysm (AAA) have not been identified and the role of genes associated with familial thoracic aneurysms in AAA has not been explored. We analyzed nine genes associated with familial thoracic aortic aneurysms, the vascular Ehlers–Danlos gene COL3A1 and the MTHFR p.Ala222Val variant in 155 AAA patients. The thoracic aneurysm genes selected for this study were the transforming growth factor-beta pathway genes EFEMP2, FBN1, SMAD3, TGBF2, TGFBR1, TGFBR2, and the smooth muscle cells genes ACTA2, MYH11 and MYLK. Sanger sequencing of all coding exons and exon–intron boundaries of these genes was performed. Patients with at least one first-degree relative with an aortic aneurysm were classified as familial AAA (n = 99), the others as sporadic AAA. We found 47 different rare heterozygous variants in eight genes: two pathogenic, one likely pathogenic, twenty-one variants of unknown significance (VUS) and twenty-three unlikely pathogenic variants. In familial AAA we found one pathogenic and segregating variant (COL3A1 p.Arg491X), one likely pathogenic and segregating (MYH11 p.Arg254Cys), and fifteen VUS. In sporadic patients we found one pathogenic (TGFBR2 p.Ile525Phefs*18) and seven VUS. Thirteen patients had two or more variants. These results show a previously unknown association and overlapping genetic defects between AAA and familial thoracic aneurysms, indicating that genetic testing may help to identify the cause of familial and sporadic AAA. In this view, genetic testing of these genes specifically or in a genome-wide approach may help to identify the cause of familial and sporadic AAA

    Human mutations in integrator complex subunits link transcriptome integrity to brain development

    Get PDF
    Integrator is an RNA polymerase II (RNAPII)-associated complex that was recently identified to have a broad role in both RNA processing and transcription regulation. Importantly, its role in human development and disease is so far largely unexplored. Here, we provide evidence that biallelic Integrator Complex Subunit 1 (INTS1) and Subunit 8 (INTS8) gene mutations are associated with rare recessive human neurodevelopmental syndromes. Three unrelated individuals of Dutch ancestry showed the same homozygous truncating INTS1 mutation. Three siblings harboured compound heterozygous INTS8 mutations. Shared features by these six individuals are severe neurodevelopmental delay and a distinctive appearance. The INTS8 family in addition presented with neuronal migration defects (periventricular nodular heterotopia). We show that the first INTS8 mutation, a nine base-pair deletion, leads to a protein that disrupts INT complex stability, while the second missense mutation introduces an alternative splice site leading to an unstable messenger. Cells from patients with INTS8 mutations show increased levels of unprocessed UsnRNA, compatible with the INT function in the 3’-end maturation of UsnRNA, and display significant disruptions in gene expression and RNA processing. Finally, the introduction of the INTS8 deletion mutation in P19 cells using genome editing alters gene expression throughout the course of retinoic acid-induced neural differentiation. Altogether, our results confirm the essential role of Integrator to transcriptome integrity and point to the requirement of the Integrator complex in human brain development

    The genetic epidemiology of joint shape and the development of osteoarthritis

    Get PDF
    Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts for ~ 50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed

    Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics

    Get PDF
    Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.Genetics of disease, diagnosis and treatmen
    corecore