5,005 research outputs found

    Screening of electrostatic potential in a composite fermion system

    Full text link
    Screening of the electric field of a test charge by monolayer and double-layer composite fermion systems is considered. It is shown that the electric field of the test charge is partly screened at distances much large then the magnetic length. The value of screening as a function of the distance depends considerably on the filling factor. The effect of variation of the value of screening in the double-layer system upon a transition to a state described by the Halperin wave function is determined.Comment: 5 pages, 2 eps figures include

    Grafted Rods: A Tilting Phase Transition

    Full text link
    A tilting phase transition is predicted for systems comprising rod like molecules which are irreversibly grafted to a flat surface, so that the non interacting rods are perpendicularly oriented. The transition is controlled by the grafting density ρ\rho. It occurs as ρ\rho increases as a result of the interplay between two energies. Tilt is favoured by the van-der-Waals attraction between the rods. It is opposed by the bending elasticity of the grafting functionality. The role of temperature is discussed, and the tilting mechanism is compared to other tilting transitions reported in the literature.Comment: 21 pages, 2 figures, to appear in Journal de Physique I

    Interaction of quantum Hall systems with waveguide elastic modes

    Full text link
    An interaction of non-uniform plane elastic modes of the waveguide type with monolayer and double-layer quantum Hall systems is considered. It is shown, that unlike the case of the surface acoustic wave propagation, the restriction on maximal values of the wave vectors for which the velocity shift can be observed experimentally does not take place for the waveguide modes. In case of study of incompressible fractional quantum Hall states the effect can be used for measuring a dependence of the effective magnetic length on the filling factor and for observing phase transitions in double-layer system under the interlayer distance variationComment: 6 pages, 3 eps figures included, Fig.1 and Fig.3 correcte

    Conductance beyond the Landauer limit and charge pumping in quantum wires

    Full text link
    Periodically driven systems, which can be described by Floquet theory, have been proposed to show characteristic behavior that is distinct from static Hamiltonians. Floquet theory proposes to describe such periodically driven systems in terms of states that are indexed by a photon number in addition to the usual Hilbert space of the system. We propose a way to measure directly this additional Floquet degree of freedom by the measurement of the DC conductance of a single channel quantum point contact. Specifically, we show that a single channel wire augmented with a grating structure when irradiated with microwave radiation can show a DC conductance above the limit of one conductance quantum set by the Landauer formula. Another interesting feature of the proposed system is that being non-adiabatic in character, it can be used to pump a strong gate-voltage dependent photo-current even with linearly polarized radiation.Comment: 9 pages; 3 figures: Final published version; includes minor revisions from the last versio

    Entanglement Spectrum and Entanglement Thermodynamics of Quantum Hall Bilayers at nu=1

    Get PDF
    We study the entanglement spectra of bilayer quantum Hall systems at total filling factor nu=1. In the interlayer-coherent phase at layer separations smaller than a critical value, the entanglement spectra show a striking similarity to the energy spectra of the corresponding monolayer systems around half filling. The transition to the incoherent phase can be followed in terms of low-lying entanglement levels. Finally, we describe the connection between those two types of spectra in terms of an effective temperature leading to relations for the entanglement entropy which are in full analogy to canonical thermodynamics.Comment: New findings in Eqs.(5)-(8) and pertaining discussion, and addendum to the title, version as publishe

    The Tomonaga-Luttinger Model and the Chern-Simons Theory for the Edges of Multi-layer Fractional Quantum Hall Systems

    Full text link
    Wen's chiral Tomonaga-Luttinger model for the edge of an m-layer quantum Hall system of total filling factor nu=m/(pm +- 1) with even p, is derived as a random-phase approximation of the Chern-Simons theory for these states. The theory allows for a description of edges both in and out of equilibrium, including their collective excitation spectrum and the tunneling exponent into the edge. While the tunneling exponent is insensitive to the details of a nu=m/(pm + 1) edge, it tends to decrease when a nu=m/(pm - 1) edge is taken out of equilibrium. The applicability of the theory to fractional quantum Hall states in a single layer is discussed.Comment: 15 page

    A number conserving theory for topologically protected degeneracy in one-dimensional fermions

    Full text link
    Semiconducting nanowires in proximity to superconductors are among promising candidates to search for Majorana fermions and topologically protected degeneracies which may ultimately be used as building blocks for topological quantum computers. The prediction of neutral Majorana fermions in the proximity-induced superconducting systems ignores number-conservation and thus leaves open the conceptual question of how a topological degeneracy that is robust to all local perturbations arises in a number-conserving system. In this work, we study how local attractive interactions generate a topological ground-state near-degeneracy in a quasi one-dimensional superfluid using bosonization of the fermions. The local attractive interactions opens a topological quasiparticle gap in the odd channel wires (with more than one channel) with end Majorana modes associated with a topological near-degeneracy. We explicitly study the robustness of the topological degeneracy to local perturbations and find that such local perturbations result in quantum phase slips which split of the topological degeneracy by an amount that does not decrease exponentially with the length of the wire, but still decreases rapidly if the number of channels is large. Therefore a bulk superconductor with a large number of channels is crucial for true topological degeneracy.Comment: 11 pages, 2 figure
    corecore