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Entanglement spectrum and entanglement thermodynamics of quantum Hall bilayers at ν = 1
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We study the entanglement spectra of bilayer quantum Hall systems at total filling factor ν = 1. In the
interlayer-coherent phase at layer separations smaller than a critical value, the entanglement spectra show
a striking similarity to the energy spectra of the corresponding monolayer systems around half-filling. The
transition to the incoherent phase can be followed in terms of low-lying entanglement levels. Finally, we describe
the connection between those two types of spectra in terms of an effective temperature leading to relations for
the entanglement entropy which are in full analogy to canonical thermodynamics.
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I. INTRODUCTION

Experimental studies of quantum Hall bilayers at total
filling factor ν = 1 have revealed a series of intriguing
phenomena.1–6 From a theoretical point of view, such strongly
interacting systems pose intricate and subtle problems of
many-body physics, and many unexpected observations are
still lacking a fundamental understanding.7 Here the exact
numerical treatment of small systems has provided important
insights and guidance of theoretical intuition.8–15 Moreover,
in the last decade many-body physics has been enriched by
the concept of entanglement, whose extensive and systematic
study originated in the field of quantum information theory.16

In particular, the notion of the entanglement spectrum has led
to novel insights in the physics of quantum Hall monolayers
at fractional filling factors,17–20 spin systems of one21–25 and
two26 spatial dimensions, quantum hall insulators,27,28 and
also rotating Bose-Einstein condensates.29 The entanglement
spectrum of a bipartite system is defined in terms of the
Schmidt decomposition of its ground state |ψ〉,

|ψ〉 =
∑

n

e−ξn/2
∣∣ψA

n

〉 ⊗ ∣∣ψB
n

〉
, (1)

where the states |ψA
n 〉(|ψB

n 〉) form an orthonormal basis of
the subsystem A (B), and the non-negative quantities ξn are
the dimensionless levels of the entanglement spectrum. In the
present paper we study the entanglement spectrum of quantum
Hall bilayers at total filling factor ν = 1, where the subsystems
are naturally defined by the two layers. Our investigations are
based on exact numerical diagonalizations in the spherical
geometry.30

II. RESULTS AND DISCUSSION

Depending on the layer separation and the amplitude
for particle tunneling between the layers, quantum Hall
bilayers exhibit a quantum phase transition between a phase
showing spontaneous interlayer coherence and quantized Hall
conductance, and a phase where such effects are absent with
the two layers being merely uncorrelated. The corresponding
phase diagram was first mapped out experimentally by Murphy
et al.1 and later reproduced theoretically via numerical
diagonalizations.9 The latter study relied on a careful analysis
of fluctuations of the pseudospin describing the layer degree
of freedom. Moreover, in the case of a very small tunneling

amplitude, the phase transition is also signaled in experiment
by the generation of a pronounced peak in the tunneling
conductance at zero-bias voltage.2 Here the critical value of the
layer separation of d = 1.83� (�: magnetic length) was nicely
reproduced by numerical calculations taking into account the
finite width of the two wells.9,13,31 In the following, however,
we shall for simplicity concentrate on the case of zero well
width where the transition is found numerically at d = 1.3�,
and we will focus on the situation of vanishing tunneling
amplitude. Moreover, we will assume the physical electron
spin (as opposed to its pseudospin) to be fully polarized by the
perpendicular magnetic field such that it does not play a role
in the present study.

In the limit of zero layer separation d = 0 both layers
merge to a fully filled monolayer whose Coulomb ground
state is given by the well-known Slater determinant of the
Vandermonde type,

|ψ〉 ∝
( ∏

i<j

(zi − zj )

)
exp

(
− 1

4�2

∑
i

|zi |2
)

|T z〉, (2)

where the zi are the complex electron coordinates in the
planar geometry. An analogous wave function exists in
the spherical model of N electrons where the sphere is
penetrated by N − 1 flux quanta.30 Here the z component
of the pseudospin can take values of T z = −N/2, . . . ,N/2
meaning that, say, the top/bottom layer contains N/2 ± T z

electrons. The case T z = 0 corresponds to Halperin’s 111
wave function.32 Tracing out one of the layers means summing
over N/2 ± T z electron coordinates in the pure state ρ =
|ψ〉〈ψ | with |ψ〉 being a single Slater determinant such that the
resulting N/2-body reduced-density matrix is proportional to
the unit matrix with all eigenvalues being equal to 1/( N

N/2±T z ).
Thus, at d = 0 the entanglement spectrum shrinks to a single
value.

Let us now turn to the case of finite d > 0. The Coulomb
ground state of the bilayer system in spherical geometry
has vanishing total angular momentum L = 0. Therefore, the
reduced density matrix is also rotationally invariant, and its
eigenvalues occur in multiplets of the angular momentum.
Figure 1 presents entanglement spectra obtained from bal-
anced bilayers (T z = 0) at small but finite-layer separation
d = 0.1� for various system sizes N and compares them
with the energy spectra of half-filled monolayers containing
Nm = N/2 particles. As seen from the figure, both types of

115322-11098-0121/2011/83(11)/115322(5) ©2011 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Regensburg Publication Server

https://core.ac.uk/display/11552832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevB.83.115322


JOHN SCHLIEMANN PHYSICAL REVIEW B 83, 115322 (2011)

0 5 10
5.5

5.52

5.54

5.56

0 5 10

3.5

4

0 5 10 15

6.8

6.84

6.88

0 5 10 15

5

5.5

6

0 5 10 15 20

8.12

8.16

8.2

en
ta

ng
le

m
en

t s
pe

ct
ru

m

0 5 10 15 20 25

6.5

7

7.5

8

en
er

gy
 s

pe
ct

ru
m

 [
e2 /l

]

0 10 20 30
L

9.45

9.5

0 10 20 30
L

8

8.5

9

9.5

bilayer d=0.1l monolayer
N=10 N

m
=5

N=12 N
m

=6

N=14 N
m

=7

N=16 N
m

=8

FIG. 1. Left: Entanglement spectra obtained from balanced
bilayers at layer separation d = 0.1� for various system sizes N .
Right: Energy spectra of half-filled monolayers with N/2 electrons.

spectra show a striking similarity which is, on the total scale
of the spectra, particularly evident at smaller system sizes.
This observation also continues to larger layer separations
as shown in Fig. 2 for the cases d = 0.7� and d = 1.3�:
With increasing layer separation the entanglement spectra
widen up (while shrinking to a single level for d → 0), but
remain similar in shape to the monolayer energy spectra.
At layer separations exceeding the critical value d = 1.3� a
qualitatively different behavior sets in: The global shape of
the entanglement spectrum remains reasonably close to the
monolayer energy spectrum, but differences are developed in
details of the data. This can be seen most clearly by following
the lowest entanglement level ξ0 and the three following
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FIG. 2. Entanglement spectra of balanced bilayers at layer sepa-
ration d = 0.7� (left) and d = 1.3� (right).

TABLE I. Angular momentum Ln of the low-lying entanglement
levels ξn at various system sizes N of the underlying bilayer system.

N L0 L1 L2 L3

10 3/2 1/2 7/2 9/2
12 0 4 2 3
14 5/2 11/2 7/2 5/2
16 4 2 6 0

levels ξn, n ∈ {1,2,3}, as a function of the layer separation.33

Those entanglement levels (along with their counterparts in
the monolayer energy spectra) occur at different values of the
angular momentum Ln which depend on system size and are
summarized in Table I.

Figure 3 shows these low-lying entanglement levels as a
function of the layer separation. While at d � 1.3� all levels
decrease with increasing layer separation, the properties of the
spectrum change qualitatively at d ≈ 1.3�: Here the excited
levels start to increase with the layer separation while the
lowest level approaches ξ0 ≈ ln(2L0 + 1). Indeed, at large
layer separations the reduced-density matrix of a single layer
is dominated by a multiplet with total angular momentum
L0 with all other eigenvalues being exponentially close to
zero. In this sense, the ground state of the bilayer system
carrying angular-momentum quantum numbers L = Lz = 0
can at large layer separation be viewed to be composed
of two monolayers with L = L0 according to a standard
Clebsch-Gordan decomposition,34,35

|0,0〉 ≈
L0∑

m=−L0

(−1)L0−m

√
2L0 + 1

|L0,m〉|L0, − m〉, (3)

leading to a reduced density matrix of the form

ρred ≈
L0∑

m=−L0

1

2L0 + 1
|L0,m〉〈L0,m|. (4)

Thus, the entanglement entropy S = 〈− ln ρred〉, 〈·〉 :=
tr(·ρred), interpolates, similarly as the lowest entanglement
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FIG. 3. The four lowest entanglement levels as a function of the
layer separation for different system sizes. At the phase boundary at
d ≈ 1.3� the entanglement spectrum qualitatively changes.
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FIG. 4. Top panels: Entanglement spectra of N = 12 electrons
with T z ∈ {1,2} are compared with the corresponding monolayer
spectra. Left bottom panel: Entanglement entropy S along with its
variance �S as a function of the layer separation d for a balanced
bilayer system of N = 12 electrons. Right bottom panels: The
“inverse temperature” β and the “specific heat” C as a function of
layer separation.

level ξ0, between a value of S = ln( N

N/2 ) at d = 0 and S =
ln(2L0 + 1) at large layer separation. In the left bottom panel
of Fig. 4 we have plotted S along with its variance

�S =
√

〈(− ln ρred − S)2〉 (5)

as a function of d for a bilayer system of N = 12 electrons.
The entropy S shows an inflection point, accompanied by a
maximum of �S, near d = 1.4�, which is close to the finite-
size value of the phase boundary obtained earlier from an
analysis of the pseudospin fluctuations.9,36

The observation that the entanglement spectrum of
interlayer-coherent quantum Hall bilayers shows an intriguing
similarity to the the energy spectrum of the corresponding
monolayer extends also to unbalanced systems. This is illus-
trated in the top panels of Fig. 4 where the entanglement spectra
of N = 12 electrons with T z ∈ {1,2} obtained by tracing out
the top layer are compared with the corresponding monolayer
spectra. Entanglement spectra obtained from bilayer systems
with negative T z (or, alternatively, by tracing out the bottom
layer) are related to the previous ones by a particle-hole
transformation are therefore identical, and the corresponding
monolayer energy spectra just differ by an additive constant.

The investigations so far have concentrated on the case
of vanishing single-particle tunneling between the layers. At
finite tunneling amplitude, the particle number of each layer
is no longer a good quantum number, and the monolayer
Fock space consists of invariant subspaces of the reduced
density matrix which are characterized both by total angular
momentum and particle number. Therefore, for not too large
tunneling, the entanglement spectra within each subspace of
given particle number will be similar to those given in Figs 1, 2,
and 3 up to an additive constant describing the spectral weight
of the respective subspace.

Focusing again on the case of zero tunneling, our results
suggest that the reduced density matrix fulfills, for not too
large layer separation d, the following approximate relation:

− ln ρred ≈ βHm + ln Z, (6)

where Z = tr exp(−βHm), and Hm describes the Coulomb
repulsion in a half-filled monolayer with N flux quanta and
Nm = N/2 electrons. The (inverse) “entanglement tempera-
ture” β is a parameter depending on d, and the occurrence
of the partition function Z in Eq. (6) ensures the condition
trρred = 1. Clearly, d → 0 implies β → 0 and Z = ( N

N/2 ). The
mid-bottom panel of Fig. 4 shows least-mean-square results
for β as a function of layer separation. As seen there, the data
depend only very weakly on system size. Moreover, defining
a “entanglement free energy” by F = −T ln Z, T = 1/β, one
derives from Eq. (6) the familiar thermodynamic relation

F ≈ E − T S (7)

with E = 〈Hm〉. Thus, the entanglement entropy of the bilayer
system turns out to have an immediate thermodynamic mean-
ing for the monolayer system characterized by the parameter
T = 1/β. These findings suggest to define, in full analogy
with canonical thermodynamics, a “specific heat” via

C = T
dS

dT
= −β

dS

dβ
. (8)

In the mid-bottom panel of Fig. 4 we have plotted C as a
function of layer separation for a system of N = 12 electrons.
as seen, the specific heat has a pronounced peak near the
phase boundary which should be seen as a strong hint for
the underlying phase transition being first order. Finally, from
Eq. (6) one also derives the result

(�S)2 ≈ β2(〈H2
m

〉 − 〈Hm〉2) (9)

which provides a direct link between the variance of the
entanglement entropy of the bilayer system and the energy
variance of the monolayer. As seen in Fig. 4, �S shows a
maximum at the phase boundary which should be considered
as another piece of evidence that, in the infinite-volume limit,
the phase transition is of first order9 rather than continuous,11

i.e., the entropy changes discontinuously.
Very recently, Poilblanc has performed a study of entan-

glement spectra of Heisenberg spin ladders, where a similarly
striking resemblance to the energy spectra of single spin chains
was found.25 This observation could also be described in terms
of an effective temperature. The results of both papers raise
the question of a common underlying mechanism being at
work, also extending previous studies on fractionally filled
quantum Hall monolayers17–20 to bilayers at filling factor
ν = 1 investigated here. Most interestingly, the latter direction
of work makes immediate contact to the enigmatic system
of a half-filled quantum Hall monolayer. However, here we
should add the caveat that the monolayer systems that naturally
arise in our present work contain N electrons in Nφ = 2N − 1
flux quanta whereas in many previous numerical studies on
(electron-spin polarized) monolayers at half-filling considered
using spherical geometry other relations of the form Nφ =
2N − M , M being a small integer, have been considered.37

To eliminate such a finite-size “shift problem” it would be
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desirable to repeat the calculations reported on here in the
toroidal geometry.

We note that a different recipe of how to eliminate
finite-size properties from entanglement spectra of quantum
Hall monolayers in the spherical geometry was put forward
very recently by Thomale et al.19 These authors propose
to strip all normalization factors from single-particle states
entering the Slater determinants of many-body wave functions.
This procedure of achieving a “conformal limit” conserves
azimuthal symmetry on the sphere (as appropriate for the
situation of Ref. 19), but destroys full rotational covariance,
which is desired in the present study on bilayer systems.
Thus, the prescription proposed in Ref. 19 is unfortunately
not applicable to our investigations here.

III. CONCLUSIONS

In summary, we have studied the entanglement spectra of
bilayer quantum Hall systems at total filling factor ν = 1. Our
investigations are based on exact numerical diagonalizations

using the spherical geometry. In the interlayer-coherent phase
at small layer separations, the entanglement spectra show a
striking similarity to the energy spectra of the corresponding
monolayer systems around half-filling. The transition to
the incoherent phase can be followed in terms of low-
lying entanglement levels, constituting a link between the
entanglement spectrum and a quantum-phase transition. Clear
signatures of the quantum-phase transition are also shown by
the entanglement entropy along with its fluctuation. Moreover,
the connection between those two types of spectra can be
described in terms of an effective temperature which gives rise
to relations for the entanglement entropy being fully analogous
to canonical thermodynamics. In particular, the specific heat
derived from this formalism provides a strong hint for the
phase transition being of first order.9

ACKNOWLEDGMENT

This work was supported by Deutsche Forschungsgemein-
schaft via SFB 631.

1S. Q. Murphy et al., Phys. Rev. Lett. 72, 728 (1994).
2I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 84, 5808 (2000).

3M. Kellogg, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and
K. W. West, Phys. Rev. Lett. 88, 126804 (2003); M. Kellogg,
J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, ibid. 90, 246801
(2003); 93, 036801 (2004); A. R. Champagne, J. P. Eisenstein,
L. N. Pfeiffer, and K. W. West, ibid. 100, 096801 (2008); A. D. K.
Finck, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, ibid. 104,
016801 (2010).

4Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing,
and W. Wegscheider, Phys. Rev. Lett. 104, 116802 (2010); R. D.
Wiersma, J. G. S. Lok, S. Kraus, W. Dietsche, K. vonKlitzing,
D. Schuh, M. Bichler, H. P. Tranitz, and W. Wegscheider, ibid. 93,
266805 (2004).

5S. Luin, V. Pellegrini, A. Pinczuk, B. S. Dennis, L. N. Pfeiffer,
and K. W. West, Phys. Rev. Lett. 90, 236802 (2003); B. Karmakar,
V. Pellegrini, A. Pinczuk, L. N. Pfeiffer, and K. W. West, ibid. 102,
036802 (2009); e-print arXiv:0907.4032.

6N. Kumada, K. Muraki, K. Hashimoto, and Y. Hirayama, Phys.
Rev. Lett. 94, 096802 (2005); P. Giudici, K. Muraki, N. Kumada, Y.
Hirayama, and T. Fujisawa, ibid. 100, 106803 (2008); P. Giudici,
K. Muraki, N. Kumada, and T. Fujisawa, ibid. 104, 056802
(2010).

7K. Moon, H. Mori, K. Yang, S. M. Girvin, A. H. MacDonald,
L. Zheng, D. Yoshioka, and S. C. Zhang, Phys. Rev. B 51, 5138
(1995); K. Yang, K. Moon, L. Belkhir, H. Mori, S. M. Girvin, A. H.
MacDonald, L. Zheng, and D. Yoshioka, ibid. 54, 11644 (1996).

8S. He, S. Das Sarma, and X. C. Xie, Phys. Rev. B 47, 4394 (1993).
9J. Schliemann, S. M. Girvin, and A. H. MacDonald, Phys. Rev. Lett.
86, 1849 (2001).

10K. Nomura and D. Yoshioka, Phys. Rev. B 66, 153310 (2002);
N. Shibata, Prog. Theor. Phys. Suppl. 176, 182 (2008).

11N. Shibata and D. Yoshioka, J. Phys. Soc. Jpn. 75, 043712 (2006).
12T. Nakajima, Phys. Rev. B 65, 233317 (2002).
13J. Schliemann, Phys. Rev. B 67, 035328 (2003).

14S. H. Simon, E. H. Rezayi, and M. V. Milovanovic, Phys. Rev. Lett.
91, 046803 (2003).
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