2,968 research outputs found

    Experimental characterization of Gaussian quantum communication channels

    Full text link
    We present a full experimental characterization of continuous variable quantum communication channels established by shared entanglement together with local operations and classical communication. The resulting teleportation channel was fully characterized by measuring all elements of the covariance matrix of the shared two-mode squeezed Gaussian state. From the experimental data we determined the lower bound to the quantum channel capacity, the teleportation fidelity of coherent states and the logarithmic negativity and the purity of the shared state. Additionally, a positive secret key rate was obtained for two of the established channels.Comment: 9 pages, 4 figures, submitted to Physical Review

    Towards Einstein-Podolsky-Rosen quantum channel multiplexing

    Full text link
    A single broadband squeezed field constitutes a quantum communication resource that is sufficient for the realization of a large number N of quantum channels based on distributed Einstein-Podolsky-Rosen (EPR) entangled states. Each channel can serve as a resource for, e.g. independent quantum key distribution or teleportation protocols. N-fold channel multiplexing can be realized by accessing 2N squeezed modes at different Fourier frequencies. We report on the experimental implementation of the N=1 case through the interference of two squeezed states, extracted from a single broadband squeezed field, and demonstrate all techniques required for multiplexing (N>1). Quantum channel frequency multiplexing can be used to optimize the exploitation of a broadband squeezed field in a quantum information task. For instance, it is useful if the bandwidth of the squeezed field is larger than the bandwidth of the homodyne detectors. This is currently a typical situation in many experiments with squeezed and two-mode squeezed entangled light.Comment: 4 pages, 4 figures. In the new version we cite recent experimental work bei Mehmet et al., arxiv0909.5386, in order to clarify the motivation of our work and its possible applicatio

    Balancing adaptivity and customisation : in search of sustainable personalisation in cultural heritage

    Get PDF
    Personalisation for cultural heritage aims at delivering to visitors the right stories at the right time. Our endeavour to determine which features to use for adaptation starts from acknowledging what forms of personalisation curators value as most meaningful. Working in collaboration with curators we have explored the different features that must be taken into account: some are related to the content (multiple interpretation layers), others to the context of delivery (where and when), but some are idiosyncratic (“match my mood”, “something that is relevant to my life”). The findings reveal that a sustainable personalization needs to accurately balance: (i) support to curators in customising stories to different visitors; (ii) algorithms for the system to dynamically model aspects of the visit and instantiate the correct behaviour; and (iii) an active role for visitors to choose the type of experience they would like to have today

    Photometry of supernovae in an image series : methods and application to the Supernova Legacy Survey (SNLS)

    Full text link
    We present a technique to measure lightcurves of time-variable point sources on a spatially structured background from imaging data. The technique was developed to measure light curves of SNLS supernovae in order to infer their distances. This photometry technique performs simultaneous PSF photometry at the same sky position on an image series. We describe two implementations of the method: one that resamples images before measuring fluxes, and one which does not. In both instances, we sketch the key algorithms involved and present the validation using semi-artificial sources introduced in real images in order to assess the accuracy of the supernova flux measurements relative to that of surrounding stars. We describe the methods required to anchor these PSF fluxes to calibrated aperture catalogs, in order to derive SN magnitudes. We find a marginally significant bias of 2 mmag of the after-resampling method, and no bias at the mmag accuracy for the non-resampling method. Given surrounding star magnitudes, we determine the systematic uncertainty of SN magnitudes to be less than 1.5 mmag, which represents about one third of the current photometric calibration uncertainty affecting SN measurements. The SN photometry delivers several by-products: bright star PSF flux mea- surements which have a repeatability of about 0.6%, as for aperture measurements; we measure relative astrometric positions with a noise floor of 2.4 mas for a single-image bright star measurement; we show that in all bands of the MegaCam instrument, stars exhibit a profile linearly broadening with flux by about 0.5% over the whole brightness range.Comment: Accepted for publication in A&A. 20 page

    Cystic fibrosis and tobacco smoke exposure

    Get PDF

    Interactions In Space For Archaeological Models

    Full text link
    In this article we examine a variety of quantitative models for describing archaeological networks, with particular emphasis on the maritime networks of the Aegean Middle Bronze Age. In particular, we discriminate between those gravitational networks that are most likely (maximum entropy) and most efficient (best cost/benefit outcomes).Comment: 21 pages, 6 figures, 2 tables. Contribution to special issue of Advances in Complex Systems from the conference `Cultural Evolution in Spatially Structured Populations', UCL, London, September 2010. To appear in Advances in Complex System

    Wigner's DD-matrix elements for SU(3)SU(3) - A Generating Function Approach

    Get PDF
    A generating function for the Wigner's DD-matrix elements of SU(3)SU(3) is derived. From this an explicit expression for the individual matrix elements is obtained in a closed form.Comment: RevTex 3.0, 22 pages, no figure

    Photospheric and chromospheric magnetic activity of seismic solar analogs. Observational inputs on the solar/stellar connection from Kepler and Hermes

    Full text link
    We identify a set of 18 solar analogs among the seismic sample of solar-like stars observed by the Kepler satellite rotating between 10 and 40 days. This set is constructed using the asteroseismic stellar properties derived using either the global oscillation properties or the individual acoustic frequencies. We measure the magnetic activity properties of these stars using observations collected by the photometric Kepler satellite and by the ground-based, high-resolution Hermes spectrograph mounted on the Mercator telescope. The photospheric (Sph) and chromospheric (S index) magnetic activity levels of these seismic solar analogs are estimated and compared in relation to the solar activity. We show that the activity of the Sun is comparable to the activity of the seismic solar analogs, within the maximum-to-minimum temporal variations of the 11-year solar activity cycle 23. In agreement with previous studies, the youngest stars and fastest rotators in our sample are actually the most active. The activity of stars older than the Sun seems to not evolve much with age. Furthermore, the comparison of the photospheric, Sph, with the well-established chromospheric, S index, indicates that the Sph index can be used to provide a suitable magnetic activity proxy which can be easily estimated for a large number of stars from space photometric observations.Comment: Accepted for publication in A&

    In memoriam two distinguished participants of the Bregenz Symmetries in Science Symposia: Marcos Moshinsky and Yurii Fedorovich Smirnov

    Full text link
    Some particular facets of the numerous works by Marcos Moshinsky and Yurii Fedorovich Smirnov are presented in these notes. The accent is put on some of the common interests of Yurii and Marcos in physics, theoretical chemistry, and mathematical physics. These notes also contain some more personal memories of Yurii Smirnov.Comment: Submitted for publication in Journal of Physics: Conference Serie
    corecore