33,704 research outputs found

    A New Young Diagrammatic Method For Kronecker Products of O(n) and Sp(2m)

    Get PDF
    A new simple Young diagrammatic method for Kronecker products of O(n) and Sp(2m) is proposed based on representation theory of Brauer algebras. A general procedure for the decomposition of tensor products of representations for O(n) and Sp(2m) is outlined, which is similar to that for U(n) known as the Littlewood rules together with trace contractions from a Brauer algebra and some modification rules given by King.Comment: Latex, 11 pages, no figure

    Double intelligent reflecting surface-assisted multi-user MIMO mmWave systems with hybrid precoding

    Get PDF
    This work investigates the effect of double intelligent reflecting surface (IRS) in improving the spectrum efficient of multi-user multiple-input multiple-output (MIMO) network operating in the millimeter wave (mmWave) band. Specifically, we aim to solve a weighted sum rate maximization problem by jointly optimizing the digital precoding at the transmitter and the analog phase shifters at the IRS, subject to the minimum achievable rate constraint. To facilitate the design of an efficient solution, we first reformulate the original problem into a tractable one by exploiting the majorization-minimization (MM) method. Then, a block coordinate descent (BCD) method is proposed to obtain a suboptimal solution, where the precoding matrices and the phase shifters are alternately optimized. Specifically, the digital precoding matrix design problem is solved by the quadratically constrained quadratic programming (QCQP), while the analog phase shift optimization is solved by the Riemannian manifold optimization (RMO). The convergence and computational complexity are analyzed. Finally, simulation results are provided to verify the performance of the proposed design, as well as the effectiveness of double-IRS in improving the spectral efficiency

    Interplay of Spin-Orbit Interactions, Dimensionality, and Octahedral Rotations in Semimetallic SrIrO3_3

    Full text link
    We employ reactive molecular-beam epitaxy to synthesize the metastable perovskite SrIrO3_{3} and utilize {\it in situ} angle-resolved photoemission to reveal its electronic structure as an exotic narrow-band semimetal. We discover remarkably narrow bands which originate from a confluence of strong spin-orbit interactions, dimensionality, and both in- and out-of-plane IrO6_6 octahedral rotations. The partial occupation of numerous bands with strongly mixed orbital characters signals the breakdown of the single-band Mott picture that characterizes its insulating two-dimensional counterpart, Sr2_{2}IrO4_{4}, illustrating the power of structure-property relations for manipulating the subtle balance between spin-orbit interactions and electron-electron interactions

    SDSS-IV MANGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence

    Get PDF
    We present our study on the spatially resolved H_alpha and M_star relation for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We show that the star formation rate surface density (Sigma_SFR), derived based on the H_alpha emissions, is strongly correlated with the M_star surface density (Sigma_star) on kpc scales for star- forming galaxies and can be directly connected to the global star-forming sequence. This suggests that the global main sequence may be a consequence of a more fundamental relation on small scales. On the other hand, our result suggests that about 20% of quiescent galaxies in our sample still have star formation activities in the outer region with lower SSFR than typical star-forming galaxies. Meanwhile, we also find a tight correlation between Sigma_H_alpha and Sigma_star for LI(N)ER regions, named the resolved "LI(N)ER" sequence, in quiescent galaxies, which is consistent with the scenario that LI(N)ER emissions are primarily powered by the hot, evolved stars as suggested in the literature.Comment: 6 pages, 4 figures. ApJ Letter accepte

    Giant Planar Hall Effect in Epitaxial (Ga,Mn)As Devices

    Get PDF
    Large Hall resistance jumps are observed in microdevices patterned from epitaxial (Ga,Mn)As layers when subjected to a swept, in-plane magnetic field. This giant planar Hall effect is four orders of magnitude greater than previously observed in metallic ferromagnets. This enables extremely sensitive measurements of the angle-dependent magnetic properties of (Ga,Mn)As. The magnetic anisotropy fields deduced from these measurements are compared with theoretical predictions.Comment: 3 figure

    Efficient Multi-Party Quantum Secret Sharing Schemes

    Full text link
    In this work, we generalize the quantum secret sharing scheme of Hillary, Bu\v{z}ek and Berthiaume[Phys. Rev. A59, 1829(1999)] into arbitrary multi-parties. Explicit expressions for the shared secret bit is given. It is shown that in the Hillery-Bu\v{z}ek-Berthiaume quantum secret sharing scheme the secret information is shared in the parity of binary strings formed by the measured outcomes of the participants. In addition, we have increased the efficiency of the quantum secret sharing scheme by generalizing two techniques from quantum key distribution. The favored-measuring-basis Quantum secret sharing scheme is developed from the Lo-Chau-Ardehali technique[H. K. Lo, H. F. Chau and M. Ardehali, quant-ph/0011056] where all the participants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted Quantum secret sharing scheme is developed from the Hwang-Koh-Han technique [W. Y. Hwang, I. G. Koh and Y. D. Han, Phys. Lett. A244, 489 (1998)] where all participants choose their measuring-basis according to a control key. Both schemes are asymptotically 100% in efficiency, hence nearly all the GHZ-states in a quantum secret sharing process are used to generate shared secret information.Comment: 7 page

    A Concentration/Purification Scheme for Two Partially Entangled Photon Pairs

    Full text link
    An experimental scheme for concentrating entanglement in partially entangled photon pairs is proposed. In this scheme, two separated parties obtain one maximally entangled photon pair from previously shared two partially entangled photon pairs by local operations and classical communication. A practical realization of the proposed scheme is discussed, which uses imperfect photon detectors and spontaneous parametric down-conversion as a photon source. This scheme also works for purifying a class of mixed states.Comment: 8 pages, 3 figure
    • …
    corecore