3,454 research outputs found

    Integrated land and water management for food and environmental security

    Get PDF

    Climate change adaptation, flood risks and policy coherence in integrated water resources management in England

    Get PDF
    Integrated water resources management (IWRM) assumes coherence between cognate aspects of water governance at the river basin scale, for example water quality, energy production and agriculture objectives. But critics argue that IWRM is often less ‘integrated’ in practice, raising concerns over inter-sectoral coherence between implementing institutions. One increasingly significant aspect of IWRM is adaptation to climate change-related risks, including threats from flooding, which are particularly salient in England. Although multiple institutional mechanisms exist for flood risk management (FRM), their coherence remains a critical question for national adaptation. This paper therefore (1) maps the multi-level institutional frameworks determining both IWRM and FRM in England; (2) examines their interaction via various inter-institutional coordinating mechanisms; and (3) assesses the degree of coherence. The analysis suggests that cognate EU strategic objectives for flood risk assessment demonstrate relatively high vertical and horizontal coherence with river basin planning. However, there is less coherence with flood risk requirements for land-use planning and national flood protection objectives. Overall, this complex governance arrangement actually demonstrates de-coherence over time due to ongoing institutional fragmentation. Recommendations for increasing IWRM coherence in England or re-coherence based on greater spatial planning and coordination of water-use and land-use strategies are proposed

    Electron-radiation interaction in a Penning trap: beyond the dipole approximation

    Full text link
    We investigate the physics of a single trapped electron interacting with a radiation field without the dipole approximation. This gives new physical insights in the so-called geonium theory.Comment: 12 pages, RevTeX, 6 figures, Approved for publication in Phys. Rev.

    High order amplitude equation for steps on creep curve

    Full text link
    We consider a model proposed by one of the authors for a type of plastic instability found in creep experiments which reproduces a number of experimentally observed features. The model consists of three coupled non-linear differential equations describing the evolution of three types of dislocations. The transition to the instability has been shown to be via Hopf bifurcation leading to limit cycle solutions with respect to physically relevant drive parameters. Here we use reductive perturbative method to extract an amplitude equation of up to seventh order to obtain an approximate analytic expression for the order parameter. The analysis also enables us to obtain the bifurcation (phase) diagram of the instability. We find that while supercritical bifurcation dominates the major part of the instability region, subcritical bifurcation gradually takes over at one end of the region. These results are compared with the known experimental results. Approximate analytic expressions for the limit cycles for different types of bifurcations are shown to agree with their corresponding numerical solutions of the equations describing the model. The analysis also shows that high order nonlinearities are important in the problem. This approach further allows us to map the theoretical parameters to the experimentally observed macroscopic quantities.Comment: LaTex file and eps figures; Communicated to Phys. Rev.

    Quantum Logic with a Single Trapped Electron

    Get PDF
    We propose the use of a trapped electron to implement quantum logic operations. The fundamental controlled-NOT gate is shown to be feasible. The two quantum bits are stored in the internal and external (motional) degrees of freedom.Comment: 7 Pages, REVTeX, No Figures, To appear in Phys. Rev.

    Relaxation oscillations and negative strain rate sensitivity in the Portevin - Le Chatelier effect

    Full text link
    A characteristic feature of the Portevin - Le Chatelier effect or the jerky flow is the stick-slip nature of stress-strain curves which is believed to result from the negative strain rate dependence of the flow stress. The latter is assumed to result from the competition of a few relevant time scales controlling the dynamics of jerky flow. We address the issue of time scales and its connection to the negative strain rate sensitivity of the flow stress within the framework of a model for the jerky flow which is known to reproduce several experimentally observed features including the negative strain rate sensitivity of the flow stress. We attempt to understand the above issues by analyzing the geometry of the slow manifold underlying the relaxational oscillations in the model. We show that the nature of the relaxational oscillations is a result of the atypical bent geometry of the slow manifold. The analysis of the slow manifold structure helps us to understand the time scales operating in different regions of the slow manifold. Using this information we are able to establish connection with the strain rate sensitivity of the flow stress. The analysis also helps us to provide a proper dynamical interpretation for the negative branch of the strain rate sensitivity.Comment: 7 figures, To appear in Phys. Rev.

    Modelling diverse root density dynamics and deep nitrogen uptake — a simple approach

    Get PDF
    We present a 2-D model for simulation of root density and plant nitrogen (N) uptake for crops grown in agricultural systems, based on a modification of the root density equation originally proposed by Gerwitz and Page in J Appl Ecol 11:773–781, (1974). A root system form parameter was introduced to describe the distribution of root length vertically and horizontally in the soil profile. The form parameter can vary from 0 where root density is evenly distributed through the soil profile, to 8 where practically all roots are found near the surface. The root model has other components describing root features, such as specific root length and plant N uptake kinetics. The same approach is used to distribute root length horizontally, allowing simulation of root growth and plant N uptake in row crops. The rooting depth penetration rate and depth distribution of root density were found to be the most important parameters controlling crop N uptake from deeper soil layers. The validity of the root distribution model was tested with field data for white cabbage, red beet, and leek. The model was able to simulate very different root distributions, but it was not able to simulate increasing root density with depth as seen in the experimental results for white cabbage. The model was able to simulate N depletion in different soil layers in two field studies. One included vegetable crops with very different rooting depths and the other compared effects of spring wheat and winter wheat. In both experiments variation in spring soil N availability and depth distribution was varied by the use of cover crops. This shows the model sensitivity to the form parameter value and the ability of the model to reproduce N depletion in soil layers. This work shows that the relatively simple root model developed, driven by degree days and simulated crop growth, can be used to simulate crop soil N uptake and depletion appropriately in low N input crop production systems, with a requirement of few measured parameters
    corecore