707 research outputs found
Radioactive Probes of the Supernova-Contaminated Solar Nebula: Evidence that the Sun was Born in a Cluster
We construct a simple model for radioisotopic enrichment of the protosolar
nebula by injection from a nearby supernova, based on the inverse square law
for ejecta dispersion. We find that the presolar radioisotopes abundances
(i.e., in solar masses) demand a nearby supernova: its distance can be no
larger than 66 times the size of the protosolar nebula, at a 90% confidence
level, assuming 1 solar mass of protosolar material. The relevant size of the
nebula depends on its state of evolution at the time of radioactivity
injection. In one scenario, a collection of low-mass stars, including our sun,
formed in a group or cluster with an intermediate- to high-mass star that ended
its life as a supernova while our sun was still a protostar, a starless core,
or perhaps a diffuse cloud. Using recent observations of protostars to estimate
the size of the protosolar nebula constrains the distance of the supernova at
0.02 to 1.6 pc. The supernova distance limit is consistent with the scales of
low-mass stars formation around one or more massive stars, but it is closer
than expected were the sun formed in an isolated, solitary state. Consequently,
if any presolar radioactivities originated via supernova injection, we must
conclude that our sun was a member of such a group or cluster that has since
dispersed, and thus that solar system formation should be understood in this
context. In addition, we show that the timescale from explosion to the creation
of small bodies was on the order of 1.8 Myr (formal 90% confidence range of 0
to 2.2 Myr), and thus the temporal choreography from supernova ejecta to
meteorites is important. Finally, we can not distinguish between progenitor
masses from 15 to 25 solar masses in the nucleosynthesis models; however, the
20 solar mass model is somewhat preferred.Comment: ApJ accepted, 19 pages, 3 figure
Tumour-associated macrophages and oncolytic virotherapies:a mathematical investigation into a complex dynamics
Anti-cancer therapies based on oncolytic viruses are emerging as important approaches in cancer treatment. However, the effectiveness of these therapies depends significantly on the interactions between the oncolytic viruses and the host immune response. Macrophages are one of the most important cell types in the anti-viral immune responses, by acting as a first line of defence against infections. Here, we consider a mathematical approach to investigate the possible outcomes of the interactions between two extreme phenotypes of macrophages (M1 and M2 cells) and an oncolytic virus (VSV), in the context of B16F10 melanoma. We show that polarization towards either an M1 or M2 phenotype can enhance oncolytic virus therapy through either (i) anti-tumour immune activation, or (ii) enhanced oncolysis. Moreover, we show that tumour reduction and elimination does not depend only on the ratio of M1:M2 cells, but also on the number of tumour-infiltrating macrophages
Relaxation Effects in the Transition Temperature of Superconducting HgBa2CuO4+delta
In previous studies on a number of under- and overdoped high temperature
superconductors, including YBa_{2}Cu_{3}O_{7-y} and Tl_{2}Ba_{2}CuO_{6+\delta},
the transition temperature T_c has been found to change with time in a manner
which depends on the sample's detailed temperature and pressure history. This
relaxation behavior in T_c is believed to originate from rearrangements within
the oxygen sublattice. In the present high-pressure studies on
HgBa_{2}CuO_{4+\delta} to 0.8 GPa we find clear evidence for weak relaxation
effects in strongly under- and overdoped samples () with
an activation energy . For overdoped
HgBa_{2}CuO_{4+\delta} E_{A} increases under pressure more rapidly than
previously observed for YBa_{2}Cu_{3}O_{6.41}, yielding an activation volume of
+11 \pm 5 cm^{3}; the dependence of T_c on pressure is markedly nonlinear, an
anomalous result for high-T_c superconductors in the present pressure range,
giving evidence for a change in the electronic and/or structural properties
near 0.4 GPa
A Bima Array Survey of Molecules in Comets Linear (C/2002 T7) and Neat (C/2001 Q4)
We present an interferometric search for large molecules, including methanol,
methyl cyanide, ethyl cyanide, ethanol, and methyl formate in comets LINEAR
(C/2002 T7) and NEAT (C/2001 Q4) with the Berkeley-Illinois-Maryland
Association (BIMA) array. In addition, we also searched for transitions of the
simpler molecules CS, SiO, HNC, HN13C and 13CO . We detected transitions of
methanol and CS around Comet LINEAR and one transition of methanol around Comet
NEAT within a synthesized beam of ~20''. We calculated the total column density
and production rate of each molecular species using the variable temperature
and outflow velocity (VTOV) model described by Friedel et al.(2005).Considering
the molecular production rate ratios with respect to water, Comet T7 LINEAR is
more similar to Comet Hale-Bopp while Comet Q4 NEAT is more similar to Comet
Hyakutake. It is unclear, however, due to such a small sample size, whether
there is a clear distinction between a Hale-Bopp and Hyakutake class of comet
or whether comets have a continuous range of molecular production rate ratios.Comment: Accepted for Publication in the Astrophysical Journa
CARMA Large Area Star Formation Survey: Observational Analysis of Filaments in the Serpens South Molecular Cloud
We present the N2H+(J=1-0) map of the Serpens South molecular cloud obtained
as part of the CARMA Large Area Star Formation Survey (CLASSy). The
observations cover 250 square arcminutes and fully sample structures from 3000
AU to 3 pc with a velocity resolution of 0.16 km/s, and they can be used to
constrain the origin and evolution of molecular cloud filaments. The spatial
distribution of the N2H+ emission is characterized by long filaments that
resemble those observed in the dust continuum emission by Herschel. However,
the gas filaments are typically narrower such that, in some cases, two or three
quasi-parallel N2H+ filaments comprise a single observed dust continuum
filament. The difference between the dust and gas filament widths casts doubt
on Herschel ability to resolve the Serpens South filaments. Some molecular
filaments show velocity gradients along their major axis, and two are
characterized by a steep velocity gradient in the direction perpendicular to
the filament axis. The observed velocity gradient along one of these filaments
was previously postulated as evidence for mass infall toward the central
cluster, but these kind of gradients can be interpreted as projection of
large-scale turbulence.Comment: 12 pages, 4 figures, published in ApJL (July 2014
CARMA Large Area Star Formation Survey: Project Overview with Analysis of Dense Gas Structure and Kinematics in Barnard 1
We present details of the CARMA Large Area Star Formation Survey (CLASSy),
while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that
spectrally imaged N2H+, HCO+, and HCN (J=1-0 transitions) across over 800
square arcminutes of the Perseus and Serpens Molecular Clouds. The observations
have angular resolution near 7" and spectral resolution near 0.16 km/s. We
imaged ~150 square arcminutes of Barnard 1, focusing on the main core, and the
B1 Ridge and clumps to its southwest. N2H+ shows the strongest emission, with
morphology similar to cool dust in the region, while HCO+ and HCN trace several
molecular outflows from a collection of protostars in the main core. We
identify a range of kinematic complexity, with N2H+ velocity dispersions
ranging from ~0.05-0.50 km/s across the field. Simultaneous continuum mapping
at 3 mm reveals six compact object detections, three of which are new
detections. A new non-binary dendrogram algorithm is used to analyze dense gas
structures in the N2H+ position-position-velocity (PPV) cube. The projected
sizes of dendrogram-identified structures range from about 0.01-0.34 pc.
Size-linewidth relations using those structures show that non-thermal
line-of-sight velocity dispersion varies weakly with projected size, while rms
variation in the centroid velocity rises steeply with projected size. Comparing
these relations, we propose that all dense gas structures in Barnard 1 have
comparable depths into the sky, around 0.1-0.2 pc; this suggests that
over-dense, parsec-scale regions within molecular clouds are better described
as flattened structures rather than spherical collections of gas. Science-ready
PPV cubes for Barnard 1 molecular emission are available for download.Comment: Accepted to The Astrophysical Journal (ApJ), 51 pages, 27 figures
(some with reduced resolution in this preprint); Project website is at
http://carma.astro.umd.edu/class
- …