507 research outputs found

    Visual Evoked Potentials Change as Heart Rate and Carotid Pressure Change

    Full text link
    The relationship between cardiovascular activity and the brain was explored by recording visual evoked potentials from the occipital regions of the scalp during systolic and diastolic pressure (Experiment I) and during fast and slow heartbeats at systolic and diastolic pressure (Experiment II). Visual evoked potentials changed significantly as heart rate and carotid pressure fluctuated normally, and these changes were markedly different in the right and left cerebral hemispheres. Evoked potentials recorded from the right hemisphere during various cardiac events differed significantly, whereas those recorded from the left did not. In both experiments, differences in the right hemisphere were due primarily to the P1 component, which was larger at diastolic than at systolic pressure. The present findings are consistent with formulations from behavioral studies suggesting that baroreceptor activity can influence sensory intake, and suggest that hemispheric specialization may play an important role in the relationship between cardiac events, the brain and behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73146/1/j.1469-8986.1982.tb02579.x.pd

    Association of MC1R Variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study

    Get PDF
    <p><b>Background</b> Carrying the cyclin-dependent kinase inhibitor 2A (CDKN2A) germline mutations is associated with a high risk for melanoma. Penetrance of CDKN2A mutations is modified by pigmentation characteristics, nevus phenotypes, and some variants of the melanocortin-1 receptor gene (MC1R), which is known to have a role in the pigmentation process. However, investigation of the associations of both MC1R variants and host phenotypes with melanoma risk has been limited.</p> <p><b>Methods</b> We included 815 CDKN2A mutation carriers (473 affected, and 342 unaffected, with melanoma) from 186 families from 15 centers in Europe, North America, and Australia who participated in the Melanoma Genetics Consortium. In this family-based study, we assessed the associations of the four most frequent MC1R variants (V60L, V92M, R151C, and R160W) and the number of variants (1, ≥2 variants), alone or jointly with the host phenotypes (hair color, propensity to sunburn, and number of nevi), with melanoma risk in CDKN2A mutation carriers. These associations were estimated and tested using generalized estimating equations. All statistical tests were two-sided.</p> <p><b>Results</b> Carrying any one of the four most frequent MC1R variants (V60L, V92M, R151C, R160W) in CDKN2A mutation carriers was associated with a statistically significantly increased risk for melanoma across all continents (1.24 × 10−6 ≤ P ≤ .0007). A consistent pattern of increase in melanoma risk was also associated with increase in number of MC1R variants. The risk of melanoma associated with at least two MC1R variants was 2.6-fold higher than the risk associated with only one variant (odds ratio = 5.83 [95% confidence interval = 3.60 to 9.46] vs 2.25 [95% confidence interval = 1.44 to 3.52]; Ptrend = 1.86 × 10−8). The joint analysis of MC1R variants and host phenotypes showed statistically significant associations of melanoma risk, together with MC1R variants (.0001 ≤ P ≤ .04), hair color (.006 ≤ P ≤ .06), and number of nevi (6.9 × 10−6 ≤ P ≤ .02).</p> <p><b>Conclusion</b> Results show that MC1R variants, hair color, and number of nevi were jointly associated with melanoma risk in CDKN2A mutation carriers. This joint association may have important consequences for risk assessments in familial settings.</p&gt

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe

    The mechanical effects of short-circuit currents in open air substations.

    Full text link
    SHort-circuit mechanical effects in substation is investigated by tests and simulations. Simplified equations are deduced to prepare standardisation of a procedure forthe design of substation against short-circuit mechanicle effects

    Are women better mindreaders? Sex differences in neural correlates of mentalizing detected with functional MRI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to mentalize, i.e. develop a Theory of Mind (ToM), enables us to anticipate and build a model of the thoughts, emotions and intentions of others. It has long been hypothesised that women differ from men in their mentalizing abilities. In the present fMRI study we examined the impact of (1) gender (women vs. men) and (2) game partner (human vs. computer) on ToM associated neural activity in the medial prefrontal cortex. Groups of men (n = 12) and women (n = 12) interacted in an iterated classical prisoner's dilemma forced choice situation with alleged human and computer partners who were outside the scanner.</p> <p>Results</p> <p>Both the conditions of playing against putative human as well as computer partners led to activity increases in mPFC, ACC and rTPJ, constituting the classic ToM network. However, mPFC/ACC activity was more pronounced when participants believed they were playing against the alleged human partner. Differences in the medial frontal lobe activation related to the sex of the participants could be demonstrated for the human partner > computer partner contrast.</p> <p>Conclusion</p> <p>Our data demonstrate differences in medial prefrontal brain activation during a ToM task depending on both the gender of participants and the game partner.</p

    Evidence for Thalamic Involvement in the Thermal Grill Illusion: An fMRI Study

    Get PDF
    Perceptual illusions play an important role in untangling neural mechanisms underlying conscious phenomena. The thermal grill illusion (TGI) has been suggested as a promising model for exploring percepts involved in neuropathic pain, such as cold-allodynia (pain arising from contact with innocuous cold). The TGI is an unpleasant/painful sensation from touching juxtapositioned bars of cold and warm innocuous temperatures.To develop an MRI-compatible TGI-unit and explore the supraspinal correlates of the illusion, using fMRI, in a group of healthy volunteers.We constructed a TGI-thermode allowing the rapid presentation of warm(41°C), cold(18°C) and interleaved(41°C+18°C = TGI) temperatures in an fMRI-environment. Twenty volunteers were tested. The affective-motivational (“unpleasantness”) and sensory-disciminatory (“pain-intensity”) dimensions of each respective stimulus were rated. Functional images were analyzed at a corrected α-level <0.05.The TGI was rated as significantly more unpleasant and painful than stimulation with each of its constituent temperatures. Also, the TGI was rated as significantly more unpleasant than painful. Thermal stimulation versus neutral baseline revealed bilateral activations of the anterior insulae and fronto-parietal regions. Unlike its constituent temperatures the TGI displayed a strong activation of the right (contralateral) thalamus. Exploratory contrasts at a slightly more liberal threshold-level also revealed a TGI-activation of the right mid/anterior insula, correlating with ratings of unpleasantness(rho = 0.31).To the best of our knowledge, this is the first fMRI-study of the TGI. The activation of the anterior insula is consistent with this region's putative role in processing of homeostatically relevant feeling-states. Our results constitute the first neurophysiologic evidence of thalamic involvement in the TGI. Similar thalamic activity has previously been observed during evoked cold-allodynia in patients with central neuropathic pain. Our results further the understanding of the supraspinal correlates of the TGI-phenomenon and pave the way for future inquiries into if and how it may relate to neuropathic pain

    CYP2C8 and CYP2C9 polymorphisms in relation to tumour characteristics and early breast cancer related events among 652 breast cancer patients

    Get PDF
    BACKGROUND: CYP2C8/9 polymorphisms may influence breast cancer-free survival after diagnosis due to their role in the metabolism of tamoxifen, paclitaxel, and other chemotherapy. cytochrome P450 (CYP)2C8/9 metabolise arachidonic acid to epoxyeicosatrienoic acids, which enhance migration and invasion in vitro and promote angiogenesis in vivo. We aimed to investigate the frequency of CYP2C8/9 polymorphisms in relation to breast tumour characteristics and disease-free survival. METHODS: A prospective series of 652 breast cancer patients from southern Sweden was genotyped for CYP2C8*3, CYP2C8*4, CYP2C9*2, and CYP2C9*3. Blood samples and questionnaires were obtained pre- and postoperatively. Clinical information and tumour characteristics were obtained from patients' charts and pathology reports. RESULTS: Frequencies of CYP2C8/9 polymorphisms were similar to healthy European populations. Significantly less node involvement (P=0.002) and fewer PR+ tumours (P=0.012) were associated with CYP2C8*4. Median follow-up was 25 months and 52 breast cancer-related events were reported. In a multivariate model, CYP2C8/9*3/*1*/*2/*1 was the only factor associated with increased risk for early events in 297 tamoxifen-treated, ER-positive patients, adjusted HR 2.54 (95%CI 1.11-5.79). The effect appeared to be driven by CYP2C8*3, adjusted HR 8.56 (95%CI 1.53-51.1). CONCLUSION: Polymorphic variants of CYP2C8/9 may influence breast tumour characteristics and disease-free survival in tamoxifen-treated patients

    Limbic Justice—Amygdala Involvement in Immediate Rejection in the Ultimatum Game

    Get PDF
    Imaging studies have revealed a putative neural account of emotional bias in decision making. However, it has been difficult in previous studies to identify the causal role of the different sub-regions involved in decision making. The Ultimatum Game (UG) is a game to study the punishment of norm-violating behavior. In a previous influential paper on UG it was suggested that frontal insular cortex has a pivotal role in the rejection response. This view has not been reconciled with a vast literature that attributes a crucial role in emotional decision making to a subcortical structure (i.e., amygdala). In this study we propose an anatomy-informed model that may join these views. We also present a design that detects the functional anatomical response to unfair proposals in a subcortical network that mediates rapid reactive responses. We used a functional MRI paradigm to study the early components of decision making and challenged our paradigm with the introduction of a pharmacological intervention to perturb the elicited behavioral and neural response. Benzodiazepine treatment decreased the rejection rate (from 37.6% to 19.0%) concomitantly with a diminished amygdala response to unfair proposals, and this in spite of an unchanged feeling of unfairness and unchanged insular response. In the control group, rejection was directly linked to an increase in amygdala activity. These results allow a functional anatomical detection of the early neural components of rejection associated with the initial reactive emotional response. Thus, the act of immediate rejection seems to be mediated by the limbic system and is not solely driven by cortical processes, as previously suggested. Our results also prompt an ethical discussion as we demonstrated that a commonly used drug influences core functions in the human brain that underlie individual autonomy and economic decision making
    corecore