59,782 research outputs found
The unusual distribution of molecular gas and star formation in Arp 140
We investigate the atomic and molecular interstellar medium and star
formation of NGC 275, the late-type spiral galaxy in Arp 140, which is
interacting with NGC 274, an early-type system. The atomic gas (HI)
observations reveal a tidal tail from NGC 275 which extends many optical radii
beyond the interacting pair. The HI morphology implies a prograde encounter
between the galaxy pair approximately 1.5 x 10**8 years ago. The Halpha
emission from NGC 275 indicates clumpy irregular star-formation, clumpiness
which is mirrored by the underlying mass distribution as traced by the Ks-band
emission. The molecular gas distribution is striking in its anti-correlation
with the {HII regions. Despite the evolved nature of NGC 275's interaction and
its barred potential, neither the molecular gas nor the star formation are
centrally concentrated. We suggest that this structure results from stochastic
star formation leading to preferential consumption of the gas in certain
regions of the galaxy. In contrast to the often assumed picture of interacting
galaxies, NGC 275, which appears to be close to merger, does not display
enhanced or centrally concentrated star formation. If the eventual merger is to
lead to a significant burst of star formation it must be preceded by a
significant conversion of atomic to molecular gas as at the current rate of
star formation all the molecular gas will be exhausted by the time the merger
is complete.Comment: 13 paper, accepted my Monthly Notices of the Royal Astronomical
Societ
The development of low temperature curing adhesives
An approach for the development of a practical low temperature (293 K-311 K/68 F-100 F) curing adhesive system based on a family of amide/ester resins was studied and demonstrated. The work was conducted on resin optimization and adhesive compounding studies. An improved preparative method was demonstrated which involved the reaction of an amine-alcohol precursor, in a DMF solution with acid chloride. Experimental studies indicated that an adhesive formulation containing aluminum powder provided the best performance when used in conjunction with a commercial primer
Identifying the challenges and facilitators of implementing a COPD care bundle.
BACKGROUND: Care bundles have been shown to improve outcomes, reduce hospital readmissions and reduce length of hospital stay; therefore increasing the speed of uptake and delivery of care bundles should be a priority in order to deliver more timely improvements and consistent high-quality care. Previous studies have detailed the difficulties of obtaining full compliance to bundle elements but few have described the underlying reasons for this. In order to improve future implementation this paper investigates the challenges encountered by clinical teams implementing a chronic obstructive pulmonary disease (COPD) care bundle and describes actions taken to overcome these challenges. METHODS: An initial retrospective documentary analysis of data from seven clinical implementation teams was undertaken to review the challenges faced by the clinical teams. Three focus groups with healthcare professionals and managers explored solutions to these challenges developed during the project. RESULTS: Documentary analysis identified 28 challenges which directly impacted implementation of the COPD care bundle within five themes; staffing, infrastructure, process, use of improvement methodology and patient and public involvement. Focus groups revealed that the five most significant challenges for all groups were: staff too busy, staff shortages, lack of staff engagement, added workload of the bundle and patient coding issues. The participants shared facilitating factors used to overcome issues including: shifting perceptions to improve engagement, further education sessions to increase staff participation and gaining buy-in from managers through payment frameworks. CONCLUSIONS: Maximising the impact of a care bundle relies on its successful and timely implementation. Teams implementing the COPD care bundle encountered challenges that were common to all teams and sites. Understanding and learning from the challenges faced by previous endeavours and identifying the facilitators to overcoming these barriers provides an opportunity to mitigate issues that waste time and resources, and ensures that training can be tailored to the anticipated challenges
Spherically symmetric selfdual Yang-Mills instantons on curved backgrounds in all even dimensions
We present several different classes of selfdual Yang-Mills instantons in all
even d backgrounds with Euclidean signature. In d=4p+2 the only solutions we
found are on constant curvature dS and AdS backgrounds, and are evaluated in
closed form. In d=4p an interesting class of instantons are given on black hole
backgrounds. One class of solutions are (Euclidean) time-independent and
spherically symmetric in d-1 dimensions, and the other class are spherically
symmetric in all d dimensions. Some of the solutions in the former class are
evaluated numerically, all the rest being given in closed form. Analytic proofs
of existence covering all numerically evaluated solutions are given. All
instantons studied have finite action and vanishing energy momentum tensor and
do not disturb the geometry.Comment: 41 pages, 3 figure
Softness dependence of the Anomalies for the Continuous Shouldered Well potential
By molecular dynamic simulations we study a system of particles interacting
through a continuous isotropic pairwise core-softened potential consisting of a
repulsive shoulder and an attractive well. The model displays a phase diagram
with three fluid phases, a gas-liquid critical point, a liquid-liquid critical
point, and anomalies in density, diffusion and structure. The hierarchy of the
anomalies is the same as for water. We study the effect on the anomalies of
varying the softness of the potential. We find that, making the soft-core
steeper, the regions of density and diffusion anomalies contract in the T -
{\rho} plane, while the region of structural anomaly is weakly affected.
Therefore, a liquid can have anomalous structural behavior without density or
diffusion anomalies. We show that, by considering as effective distances those
corresponding to the maxima of the first two peaks of the radial distribution
function g(r) in the high-density liquid, we can generalize to continuous
two-scales potentials a criterion for the occurrence of the anomalies of
density and diffusion, originally proposed for discontinuous potentials. We
observe that the knowledge of the structural behavior within the first two
coordination shells of the liquid is not enough to establish the occurrence of
the anomalies. By introducing the density derivative of the the cumulative
order integral of the excess entropy we show that the anomalous behavior is
regulated by the structural order at distances as large as the fourth
coordination shell. By comparing the results for different softness of the
potential, we conclude that the disappearing of the density and diffusion
anomalies for the steeper potentials is due to a more structured short-range
order. All these results increase our understanding on how, knowing the
interaction potential, we can evaluate the possible presence of anomalies for a
liquid
Momentum Analyticity and Finiteness of the 1-Loop Superstring Amplitude
The Type II Superstring amplitude to 1-loop order is given by an integral of
-functions over the moduli space of tori, which diverges for real
momenta. We construct the analytic continuation which renders this amplitude
well defined and finite, and we find the expected poles and cuts in the complex
momentum plane.Comment: 10pp, /UCLA/93/TEP/
Particle phenomenology on noncommutative spacetime
We introduce particle phenomenology on the noncommutative spacetime called
the Groenewold-Moyal plane. The length scale of spcetime noncommutativity is
constrained from the CPT violation measurements in system
and difference of . The system
provides an upper bound on the length scale of spacetime noncommutativity of
the order of , corresponding to a lower energy bound
of the order of . The difference of constrains the noncommutativity length scale to be of the order of
, corresponding to a lower energy bound of the order
of .
We also present the phenomenology of the electromagnetic interaction of
electrons and nucleons at the tree level in the noncommutative spacetime. We
show that the distributions of charge and magnetization of nucleons are
affected by spacetime noncommutativity. The analytic properties of
electromagnetic form factors are also changed and it may give rise to
interesting experimental signals.Comment: 10 pages, 3 figures. Published versio
- …